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Distributed Covering by Ant-Robots
Using Evaporating Traces

Israel A. Wagner, Michael Lindenbaum, and Alfred M. Bruckstein

Abstract—Ants and other insects are known to use chemicals of cleanness of the path can also serve as a trace, if the
called pheromones for various communication and coordination dust is slowly falling back on the floor, and hence enables
tasks. In this paper, we investigate the ability of a group of 5 chronglogical comparison between tiles in terms of agent

robots, that communicate by leaving traces, to perform the task . . . S
of cleaning the floor of an un-mapped building, or any task that visits. See Fig. 1 for an example. The topology of the building

requires the traversal of an unknown region. More specifically, we May change while the robots work; e.g. people or furniture
consider robots which leave chemical odor traces that evaporate may move and doors may open or close, hence a preliminary
with time, and are able to evaluate the strength of smell at every phase of floorplan mapping will not be of much help here.
point they reach, with some measurement error. Our abstract Such a problem is critical in case of a damage to a nuclear
model is a decentralized multiagent adaptive system with a shared .
memory, moving on a graph whose vertices are the floor-tiles. reactor,.w.here robots are the only creatures that can survive
We describe three methods of covering a graph in a distributed the radiation and move around to clean hazardous waste
fashion, using smell traces that gradually vanish with time, and [33]. Central control is usually not possible since the strong
show that they all result in eventual task completion, two of them  radioactive radiation avoids almost any possibility of wireless
in a time polynomial in the number of tiles. As opposed to existing  communication. Similarly, one might consider a surveillance

traversal methods (e.g., depth first search), our algorithms are . . . -
adaptive: they will complete the traversal of the graph even if task in which robotic guards have to visit the rooms and

some of the a(ge)nts die or the graph changes (edges/vertice$orridors of a dynamic art gallery, and to guarantee that each
added or deleted) during the execution, as long as the graph staysand every room and corridor is visited frequently enough.
connected. Another advantage of our agent interaction processes |n this paper, we present systematic methods for local,
is the ability of agents to use noisy information at the cost of cue-based operation of a group of robots that solves the
longer cover time. _ _ _ _ above problems. As a (simplifying) mathematical model, we
Index Terms—Ant-robotics, covering, exploration, multi-agent yse graph traversal, inspired by ant foraging, based on the
systems, robotics. assumption that the world is divided into vertices (tiles) and
edges (tile-separating lines), and an ant leaves a constant
|. INTRODUCTION amount of pheromone at each point it visits. These traces
. : . are later used by the ant and its fellows as a memory of the
O mﬁlt(i); tgﬁt bsassltce rt]:lse(?;eﬂgs\: E?ngers)irar?u;gg g:,%bmz 'D’:}test time this point has been visited so far. We shall describe
. 9 Syste . 9 bt firee search algorithms, prove their convergence, bound their
behavior for the individual, that will lead to a desired COlor%VOI’St-CElSE time complexity, and test them empirically

behavior while reducing cost in terms of communication As far as we know, this work presents the first performance

overhead and hardware complexity. We shall consider a taa'lsri](alysis of a model that considers tbeoperativepotential

in which the floor of a building has to be cleaned by a group.’. - ce-oriented behavior in terms of time-com .
: - - plexity, under
of autonomous robots that do not have a prior knowled %isy circumstances
of the building’s floorplan. We model the floorplan of the '
building as being composed of small rectangular regions (tiles
or roorgls), all o? the spame size, and assurge that% tiIe/go n Related Work
can be cleaned in one unit of time. To help their navigation, 1) Robotic Covering:Covering is an important applica-
the robots are allowed to leave traces while they walk, elgon of robotics; researchers have investigated various aspects
by means of odor, heat, or color trails. We further assun®é the topic, and we shall only be able to present a short
that the intensity of traces decreases with time, therefore $§mple here. In [10], the issue of inter-robot communication
comparing the trace levels at two neighboring tiles, the robw@s addressed in the context of various missions, among them

can deduce which tile was visited more recently. The sta@azing—i.e., visiting every point of a region for purposes
of object-fetching. There, a reactive model of behavior is
Manuscript received April 22, 1996; revised February 7, 1999. This pappresented, and simulations show that detailed communication
was recommended for publication by Associate Editor R. Chatila and Editgpes not contribute much to the performance. In [4] many
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Fig. 1. System of rooms divided into square tiles with a dynamic obstacle. Two cleaning robots are shown with their directional smell traces. Note
that the traces degrade with time.

undersea terrain, using exact location sensors and interaastack of memory. In [54], the dirt on the floor served as
mapping. Practical implementations of covering algorithmmemory to help the robot's navigation, while in [55] and
have been demonstrated in [58], [42] and more recently [B6] a vanishing trace was used for that purpose. In the
[15]. In [58], a set of robots is described that help clean last two papers, as well as in the current work, the robots
railway station, using magnetic lines on the floor as guidelinesre assumed to be finite-state machines, i.e., they use only
The method is reported to work well, but is limited to prea constant amount of internal memory, the size of which is
mapped regions in which magnetic beacons have been locatedependent of the size of the space to be covered. In most of
In [42], a cooperation of a team of robots is created e work mentioned above, solutions are presented either by
an explicit level of inter-robot communication. Each robosimulation or by actual hardware implementation, for either a
can choose one of multiple possible behaviors, according dimgle- or a multi-robot system. The mathematical analysis of
its specific conditions. In one of these behaviors the robstich multiagent systems, however, is still in its very beginning,
plays the role of a janitorial service man, by cleaning thas has been pointed out in [7] and many other papers. Such
dust around it. In [15], a competition is reported betweean analysis is desired for both proving the correctness of an
various robots on cleaning an apartment-like region, includirdgorithm and evaluating its performance. In the current work
furniture. Cleaning and other household robotics applicatiomse suggest a preliminary model and some novel techniques
are discussed in [35]. Other applications of robotic coverirthat may be found useful in the analysis of covering by robots.
are in cleaning hazardous waste [33] and demining, i.e.,2) Mechanisms for Leaving Trace®©ne way to mark a
the removal of mines from old mine fields. A centralizedrail is by using odor, like the pheromones used by various
multirobot system for the exploration and cleaning of mines issects. Experiments with an insect-inspired robot are reported
presented in [41] with experimental results. A more receiit [44], where the robot has an odor marking and detection
work [46] suggests a distributed behavior-based approagystem. Another way of marking is by heating the floor. Ac-
to the control of a group of mobile robots performing a@ording to several experiments (reported in [5], [43] and [45])
clean-up and collection task, empirically demonstrating ithe temperature distributiod” at a distanced from the trail
performance. The special case of covering a finite, discretad at a time after laying the trail can be approximated by
z_pace was addressed in various ways. In [_24] and [23], a T(6,1) = I(t)e_(é/w)z )
iscrete problem of graph-exploration by a single robot was
solved using markers and assuming that the robot can weeere I(t) is a time-variant intensity function of the
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thermal path, andv is a constant. In a later work [45] anso that all parts of the region will be covered as “uniformly”
experimental study is reported that shows how thermal trai$ possible. This task gets more complicated if there is more
can be traced several tens of minutes after being marked. than one robot in the group, but, as far as we know, was not
3) Computing: Graph search is an old problem; severatonsidered analytically even in the context of a single robot.
methods exist for deterministic (e.g. [52], [26]) random (e.g., Our approach is computational and considers this task in
[2], [12], [14]) and semi-random ([27]) covering, but a lota generic, abstract context. It uses a gragh= (V, E)
more needs to be done in order to make the theory usefol describe the parts of the region to be covered and the
in the context of robotic covering problems. A step towardonnections between them. In this graph every vertex rep-
a trace-oriented theory of search was done in [11] and [13§sents an atomic region (“tile” or “room”) and every arc
wherepebblesare used to assist the search. Pebbles are tokeggresents a neighborhood relation between two such atoms.
that can be placed on the floor and later be removed. In [13]Qur assumption is that the robots are small enough such that
is shown that a finite automaton with two Pebbles can searsdveral robots can occupy the same tile/room simultaneously.
all mazes, but no timing analysis is done. In a sense, ODhe task is to cover the graph “as fast as possible”. To achieve
work is a generalization of this work, since one may ushis task we specify several strategies. Every such strategy is
“diminishing pebbles” or “deflating tokens” as a model of definition of a local behavior rule followed by the robot.
odor markings. We consider our algorithms to be a reasonablestrategy is considered better if it covers the region faster,
trade-off between the rigid, highly sensitive DFS on one handnd the efficiency of the different strategies is evaluated by
and the absolutely adaptive (but very time-consuming) randameasuring the time from the start until the last yet unvisited
walk, on the other hand. Note that the problem of finding th#e is reached.
shortest traversal of a graph, is NP-complete even if the graphThe difference between the strategies we propose is in
is completely known, its vertices are grid points and its edgése assumption we make regarding the amount of memory
are grid-lines [34]. available to every robot, and regarding the “trace leaving”
4) Biology: Some aspects of the behavior of continuousehavior. Specifically we shall consider either robots which do
smell-oriented swarms were investigated in [40], where ribt have any memory or robots which are equipped with some
differential equation model is used to investigate the stabiligmall memory enabling them to backtrack. We also consider
properties and the patterns generated in the process. Onrifisots which leave traces inside a tile (i.e., on vertices)
biological side, several models have been suggested for thesus robots which leave their traces on the passage between
social behavior of ant-colonies, e.g., correlated random-walifferent tiles (i.e. on edges).
in [1]. In a different context, models were investigated for In analyzing the strategies we shall look for several behavior
chemosensitive cells (like bacteria or leukocytes) in a randagharacterizations: the first obvious one is that the robots indeed
walk that is biased by the concentration of chemicals (e.gccomplish their task and reach every part of the region. We
[3]). The foraging and trail-following behaviors have beeghow that this property, denotezbnvergenceindeed holds
thoroughly investigated in several works; see e.g., [29] atfier all the proposed strategies even though these strategies are
[21]. Analytical work was also inspired by trail-following extremely simple, and the region is unknown, may be arbitrar-
dynamics, in both a continuous, deterministic case [17] afig complicated and may even change during the operation.
a gridded, probabilistic setting [18]. Moreover, the covering processes converge even if some of
The rest of the paper is organized as follows: in the newie robots cease to work before completion; in such a case,
section we state the problem formally, and state the maiie remaining ones will eventually complete the mission.
results. Section Ill presents the first algorithanT-wALK -1 A second important characterization is ttime required
with its analysis, and Section IV is devoted to an improveg cover all the region. We provide here rigorously derived
algorithm, ANT-WALK -2. Section V describes our simulationshpounds which quantify the time required to cover the region
and experiments while open questions and further reseafghhe worst case. In particular we show that two of the local
directions are the topic of the discussion in Section VI. Apules yield a cover of the whole region in time polynomial in
pendix | exhibits the proofs deferred from the body of théhe number of tiles. A particular adversary example shows
paper. Appendix Il is devoted MERTEX-ANT-WALK—a vertex that the quadratic time predicted by this bound is indeed
oriented method of search, while in Appendix Ill we discusgquired in some situations. We also simulate the local-rule-
an interesting application of trace-oriented walks for creatingiven behavior over several particular scenes and show that
and maintaining a spanning tree in a dynamic network.  in these cases the global performance is actually better.
A third interesting characterization is tispeedupachieved
by using more than a single robot. Both the rigorous bounds
and the simulations address this issue and show that a substan-
The task considered here is the traversal of a region bgl reduction in cover-time is achieved by using more robots.
a group of robots which can carry out useful tasks such &kis, however, is only true up to a limit where additional
cleaning or guarding this region. We are interested in thebots are of no help.
capabilities of robots working in a distributed, unsupervised The first local rule, denoted MY-WALK-1, requires no indi-
mode, i.e., the robots determine their motion themselves frondual memory on each machine. The only (shared) memory
local cues and do not rely on external guidance. The aim magsumed comprises of the smell traces that are being laid on
be either to cover the region as fast as possible or to mave edges of the grapfi. Denoting byt;. the time needed to

II. PROBLEM DEFINITION AND SUMMARY OF RESULTS
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cover all edges of the graph Byagents that follow this rule, so by “smelling” two edges one can say which one of them

we prove the following upper bound an. was visited before the other. (This ability may be limited by

Theorem 1For ANT-WALK-1 a sensing errorr—in the presence of which, one can only
1+a)n distinguish between traces that differ by more tharsmell

th < nd <p(G) + k ) units.” More on this in Section IlI-B in the sequel.) Hence,

leaving a smell trace ofw,v) at timet¢ is similar to writing
thet, the time of traversing this edge. For sake of simplicity,

the trace intensity sensors are perfectly precise), A() we’ll denote traces by the time they were left. In this discrete

is the cut-resistance af, defined in the sequel and obeying€!ting we assume that if an ant is located at a nodeV’ ()
p(@) < ;\l(_—Gl) with A\(G) being the edge-connectivity . it can move along any of the edges emanating fromo one

The second rule of MTION, ANT-WALK-2, is a generalization of its neighbors. The set af's neighbors is denoted by (u).

of the common Depth-First-Search method. It relies on ZPrmally, the first and simplest local rule of motion to be

limited amount of memory in each agent, and the ability tBonsidered Is:
Rule ANT-WALK-1(u vertex;)

control its trace-laying mechanism. In reward, we get the

where A is the maximum vertex degree i, n = |V(G)|,
« is related to the measurement noige £ 0 implies that

following improved upper bound on the performance. A) t_:: t+ 1 i
Theorem 2 Eor ANT-WALK-2 B) find an edge(u,v). emanating fromy such that
(1+a) s(u,v) = minge vy is(u, w)};
t < (nA/Z)[ w (if there is more than one such neighbor -

, make some heuristic decision)
where all notations are as before. (while moving fromu to v

The third methodyERTEX-ANT-WALK is similar to the first drop some pheromone along the edgev))
one, but assumes that smell traces are laid on the verticeé) go tow, and in the process sefu, v) := t;
rather than the edges. For this method we show that end ANT-WALK-1. ’ '

Theorem 3For VERTEX-ANT-WALK Note that more than one agent may occupy a tile at the

t < ”_Ad same time; however the agents are exiting the vertex in slightly
. _ -k different times. The order of exiting the tile can be determined
whered is the diameter ofG. by some priority between the agents, which may be determined

Although the upper bound fOVERTEX-ANT-WALK is quite ejther by a unique hard-coded ID, a random phase on the clock,
high, our simulations show that its performance is actualpt from geometrical considerations (e.g. the agent coming from
in the same order of magnitude of the other two algorithmge north is the first to select an edge, the one coming from
(See Figs. 8 and 9). Another interesting property of the thiffle east is the next and so on). The actual way to implement it
algorithm is that the paths taken by the robots sometimgfay be to cause each robot to have a slightly different phase
converge to cycle-covers of the graph of tiles; see Figs. 13— his clock, or even use a random phase, which should avoid

collisions with high probability. See Fig. 2 for an illustration
. ANT-WALK-1: COVERING WITHOUT INDIVIDUAL MEMORY  of the algorithm.

We consider a grapliy = (V, F) as a model for the floor
to be cleaned. Every vertex in this graph corresponds to a tile ) .
on the floor, and every edge—to the boundary between tio Analysis of thewT-waLk-1 Algorithm
neighbor tiles. Also, we assign for each edgev) two “smell In this subsection we shall prove an upper bound on the time
labels”: s(w, v) which is the time of the most recent traversatomplexity of theanT-waLK -1 algorithm, assuming noiseless
of the edge in thei-to-v direction, and similarlys(v, «) for the  conditions, i.e.c« = 0. Noisy sensing will be considered in the
other direction. Alls-labels are initially reset to 0. See Fig. 2next subsection. The basic idea in our analysis of the cover
for an example of a floor and its graph model. We assume thiahe is a proof that the number of passages along one edge
each time an edgé:,v) is traversed, it is marked by a freshcannot differ too much from the number of passages along any
trace of odors(u, v), that overrides the previous trace on thisther edge in the graph. First, consider the sequéhcevhich
edge in the(u, v) direction; s(v, u) remains unchanged. is the sequence of vertices visited just afteby all robots,

We want our group of agents (e.g., ants, robots) to traverselered chronologically; that is—each time a robot leaves
all the edges of the graph without carrying any internand goes to, say—thenwv is added to the sequendé,, | will
memory. The only traces that are allowed are in the envirodenote the length of this sequence, i.e. the number of times
ment—these are the times of most recent visits to each edgalew has been left so far. Due to the rule of motion defined
in each direction, coded by the trace left there by an agent.dbove, we can show that
this rule of motion, an ant visiting vertex € V(&) checks Lemma 1: For each vertex € V, P, is a periodic sequence
the labels on all edges emanating framnin the direction from with periodd,, whered,, is the degree of; in G.

u outside. Then it goes to an edge that has the smallest trac&he proof of this Lemma, as well as the rest of the proofs
on it, that is—the edge that was not visited for the longest this paper, is found in Appendix I.

time. In the course of traversing the edge, the ant leaves ther&rom now on we shall not use “smell” or “traces” anymore;
a constant amount of pheromone. The amount of smell cather, we shall only rely on the fact that the neighbors of each
an edge(u,v), denoteds(u,v), decreases slowly with time, edge are always visited in the same cyclic order, no matter
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Fig. 2. Four cycles OF ANT-WALK-1 are needed to traverse a floor with four tiles. Also shown is the corresponding directed graph with the smell-labels
on its edges. Note that there are two labels on each edge, to designate the trace intensity in each direction of the edge.

what this order is. Hence our results apply as well to any Lemma 2: If v andw are both neighbors af, then, at all
other local decision method that guarantees the cyclic-ordenes during execution oANT-WALK -1,
property.

Let f(u,v) be theflowalong edgéu, v) € E, defined as the |/, 0) = flu,w)] < 1. (3)
number of times any robot went over this edge in the direction  proof: implied by (2). n

from u to ».* Using P, to denote the sequence of pastdsits A similar fairness among the edgesteringa vertex does
(as defined above, before Lemma 1), the periodicity proved it necessarily hold.

Lemma 1 implies that for any neighberof « Remark: The proof relies on the assumption, stated earlier,
that several robots may reside in the same tile. Furthermore,

{@J < fluv) < PPuq () during each cycle (i.e., between tineand timet + 1), the
d, | ~ T dy robots move sequentially and every robot may plan its move

based on the traces left by all previous moving robots including
Therefore theanT-wALK-1 algorithm guarantees that twothose left by robots that move in the same cycle (before it made
edges emanating from the same vertex will not differ too mu¢he move). As was mentioned above, such a behavior can be
(i.e., by more than one) in their respective number of visitachieved with high probability by assigning a random phase
or in other words: the flow from a vertex is fairly distributedo the clock of each robot or, alternatively may be guaranteed
among its neighbors. We state this formally as follows: by setting hardwired priorities to the robots.
We shall now bound the total flow through any cutéGh
1Please note that botR, and f(u,v) are time-dependent; we, however,I:et S C V be a (real) subset Offthe vertex-set(@f and write
omit the time parameter in order to simplify our notations. S for V'\ S. We denote byS : S) the set of edges having a
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source inS and a destination it$. The flow through the cut
is then defined to be

f(S:5)2 > flay).

zES,yeS
Lemma 3: At all times, and for all cutgsS : S) in G
F(S:5)— J(5:9)| <k

wherek is the number of agents travelling (@.

Combining the fairness of flow (Lemma 2) and its bounded-
ness (Lemma 3), shows that the intensity of flow cannot differ

too much between vertices .

Let g(x) denote the maximum flow along an edge emanating

from a vertexxz € V
g\r) = Inax Z, .
( ) yEN(a;){f( y)}

The flow f(x,y) associated with every edde, ) emanating
from z satisfiesg(z) — 1 < f(z,y) < g(z) (Lemma 2).
Let S[1,n] be the set of all vertice$z1,...,x,} ordered in
increasing order ofy(-), i.e.,

g(01) < gla2) < -+ < glan).

Let S[¢, j] be the subsefx;,zi41,...,x;}, and consider the
cut C(i, j) betweenS[1,¢] and 5[4, n],

C(i,j) = {(zp,zq) [P <4, ¢ 2 5}

In the following lemma we show that the functigi-) has
a discrete “smoothness” property:
Lemma 4: At all times and for alll < i <n

k-
|C@,i+ 1)
It follows that the difference between thevalues of any

two nodes inG cannot become too large:
Corollary 1:

lg(xi) — g(@ir)| £ 1+

n—1
k
: — <n-—1 R
wheren is the number of vertices .
Also, since|C(4,i+1)| is bounded below by(G), the edge
connectivity of G, it can easily be seen that
Corollary 2:

k

Va,y € Vs lg(x) — g(y)| < (n — 1)<1+ m)

923

Definition 1: Assume that{xi,---,z,} is the set of ver-
tices in a grapi?. For a given permutation € S,, we define
the cut-resistance induced by this specific permutation to be

n—1 1
A
prt Y o
; |C(0i; 0it1)]

and the cut-resistance ¢ is defined as the maximum g,
over all possible permutations ifi,

p(G) £ max{ps(G)}.
oS,
The following observations op(G) can easily be verified:
1) if G is a path along: vertices, therp(G) = n — 1;
2) if G is a circle withn vertices, therp(G) = (n — 1)/2;
3) if G is the complete graphi{,), then

1 1 1 1
-0 2m=2 3-8 T o1

(@) =
<1

4) if G is anm x m grid-graph thenp(G) = O(m) =
O(v/n);
5) for every graphp(G) < (n — 1)/A(G), since any cut
has at least\(G) edges in it.
Intuitively: the denser the graph, the lower its cut-resistance.
The following corollary results from Lemma 4.
Corollary 3:

Va.y € Vi g(@) — g(y)| < n— 1+ kp(G).

Recall thatg(u) is the maximum flow along an edge
emanating fromu, and that this amount (according to Lemma
2) is at most 1 unit more than the minimum flow along an
edge emanating from. Hence we get

Corollary 4:

V(u,v), (z,y) € E: | f(z,y) = f(u,v)]
<14+ kp(G)+ (n—1) = kp(G) + n.

Remark: Another function that could come to mind here is
the edge-expansion factasf the graph, defined as

}

but it should be noted thap(G) is better suited for our
purposes, since it represents the conductivity of the whole

(S : S)|
151

1111
SCV,|S|<n/2

Using the edge connectivity has a disadvantage: its valugdraph, not only the extremal (i.e. worst) regions in it. For

for G is strongly biased by extremal areas of the graph, e
one narrow corridor may impose a lowalue on an otherwise

%f(ample, consider a graph which constitutes of two complete
Subgraphs#;, 2 each isomorphic ta¥;, o, with one edge

dense graph. Rather, we suggest a more realistic measurétnecting them. The edge-expansion factotowill be as

the “resistance” ofZ to the motion of trace-oriented agent

in it. For this purpose we define tleait-resistancef a graph
as follows:

Small as2/n, while its cut-resistance will not be much different

from that of the complete grapH,,, since almost any cut has
at leastn/2 edges in it.
Let ¢, (&) denote the time needed to cover the edges of a

2The edge-connectivity of a connected graghis defined [8] as the connected grapldé? by % agents that follow theNT-wALK-1

minimum number of edges that need to be removed in order to disconne

the graph, i.e., itz has edge connectivity(G), there is no set oA(G) — 1
edges the deletion of which will disconnegt

a?(f:jorithm. The following theorem establishes an upper bound
on this time.
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Fig. 3. Hard case for the ANT-WALK-1 rule. There arevertices, and about.25n edges. The diameter is abduBn, and the time needed to traverse it
may be as long a®(»?). The dotted arrows show the worst case where each triangle of vertices is a “trap” that causes the ant to go back to its starting point.

Theorem 1: one that was left at timé+«. This causes a deviation from the
PN a basic rule of behavior which implies that the difference in flow
tk<n (— + p( )) i.e. number of passages) between two edges emanating from
k
. . . _ the same vertex may become as largd as« (rather thant
wrr:dere é Iis tt?? ma}[x:ml:r? \r/]erte;f;degree &, n = [V(G)| as before). In order to estimate the quantitative effect of such
and p(G) is the cut-resistance o, poise on the performance of oanT-wALK-1 algorithm, we

asRc?e:?]aLkel:sZQr? lf)r%l::dﬂ\]’; € gig\r;e(?elsirtllggt ug tow?]:roenjgné%{/ork our previous results to account the possible deviation.
P 9. 2, emma 2x. If v and w are both neighbors of:;, and

goes back and forth severgl times before covering the QF?BTE sensor deviation is at moat then, at all times during
Such problems can sometimes be cured using a heuristic .
: . execution OfANT-WALK

resolve ties among edges with equal traces on them. Another
solution is to allow backtracking as will be shown in algorithm |f(u,v) — flu,w)| < a+ 1. 4)
ANT-WALK -2 that is described in the next section. . o

Remark 2: The expression in parenthesés,+ p(G)), can This mod|f|cat|qn is due to the faqt that an edge may be
be explained intuitively as follows: If the graph is dense, it§aversed up tav times before the noisy sensor can see that
cut-resistancep(G) is small and the tern¥ is significant, this edge is favored over the others emanating from
i.e.—more robots deliver a faster cleaning. On the other handconseauently, Lemma 4 becomes. _
if G is sparsep(Q) is large and increasing the number of Lemma4a: With sensor deviation at most, it always
robots does not make much sense. This intuitive interpretatig@lds that for alll <4 <n
was also observed in our simulations. ;

|g(xz) g(xz+1)| <l+a+ |C(L,L+1)|

B. Effect of Noise and Sensing-Errors on

. and
the Dynamics oANT-WALK-1

Theorem &:
In reality, sensors and effectors are not perfectly reliable (1+a)n

and noise can distort their operation. The following is a rather e £ nA<T + P(G)>

skeptical statement was made in [16]:
... [sensors] ... simply do not return clean accurate Wheré« is a bound on the deviation of the sensors.
readings. At best they deliver a fuzzy approximation Observe that as the noise parametegrows, there is more

to what they are apparently measuring, and often they S€Nse in using a larger number of robots. Interestingly enough,

return something completely different. this observation is similar to the experimental results presented
in [19] (in a rather different context), where a crypt-arithmetic

However, the effect of noise depends on the type of algorithm . . )
) . : : uzzle is being solved by several cooperating agents that can

that is being used in the system. In a multiagent system the . .
. S exchange hints over a common blackboard. There, it was
noise has another aspect—the individual agent cannot alw%yd()s

be sure as for the reliability of the others, hence a god served (empirically) that a group of solvers may demonstrate

multiagent algorithm should be tolerant to failures occurrin% better cooperation under noisy conditions.

in interagent communication. Formally, if one agent has a
fault probability of p, then an algorithm that relies on the V- ANT-WALK-2: COVERING WITH BACKTRACKING—DFS
correct behavior of alk: agents will have failure probability EXTENDED TO MULTILEVEL SEARCH
of 1 — (1 — p)*, which tends to 1 a& grows. As we saw in the previous section, there are cases where
We claim that our approach to covering problems is welaNT-wALK -1 gets into a series of “traps” that cause useless
suited for noisy sensors/environments, since it does not redrvisiting of the same locations. In this section we suggest
too strongly on any specific data or hardware, but only another algorithm that, in general, works more efficiently, but
relative quantities which do not suffer so much from the errorequires some more complicated hardware. This algorithm is
in sensor readings. Let be the amount of noise in the sensoessentially a generalization of the famous depth-first-search
measurement. That is, if the smell along edgey) is equal algorithm. First, let us formulate the common DFS (as in [51],
to s(x,y), then the noisy sensor may tell us anything betweg81], [25]). The basic idea in depth-first-search is to try and
s(x,y) — 5 and s(z,y) + 5. Such a level of noise implies continue the search to a neighbor that has not yet been visited;
that a sensor (or an algorithm that relies on the sensor) canifistone exists, the search “back-tracks” along the edge used in
distinguish between a trace that was left at some tinaed the first entrance to the current vertex. If no such edge exists
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(i.e., the current vertex was the first in the search), the seakghy. Hence, ift;,(u) < search-leve{r) for a robotr, then
terminates and reports that all edges(éthave been visited. the vertexw is considered “new” by this robot. Initially, all
To formalize it in our trace-oriented terms, we will need theearch-level variables are set to 0, and the rule of motion for
following two definitions, that make use of the traces on theach agent is

edges: for each vertex, let #;,(u) be the time of the first /* multilevel DFS */

entry tow, i.e., /* initially all search-levels are set to 1, */
A ) *and all s(.,.)’s to 0. */
tin(u) = SN () 5o u)>0{3(vv“)} Rule ANT-WALK-2(search-levefr) integer,u vertex;)
o A)t:=t+1;
and lett,,:(«) be the time of the first exit from, i.e., B) if dv € N(u) s.t. s(u,v) < search-leve{r)
A . then
four () = | FR, sy U O sets(u,0) = ;
if ¢;,(v) < search-leve(r) go tov;
Recall that in theDFS algorithm an edge is never visited /* have | exhausted the current level of search? */
twice in the same direction (Lemma 3.1 in [25]), hencetthe C) if tin (1) > tou(u) > search-levefr) then
andt,,. values, once set, will never change. We assume that setsearch-leve(r) = t;
initially all #;,, andt,,, values are set t6. Two observations /* backtracking - all neighbors are old */
can be made. D) find an edge&w, v) such thats(v, u) = i, (w);
1) If botht;,(w) andt.y:(v) are0 thenw is a “new” vertex,  E) sets(u,v) :=t;
i.e., it has never been visited. F) go tow.
2) If tin(u) > tou(w) > 0 (i.e., it was left before it was end ANT-WALK-2.
entered) then, was an initial vertex of the tour. Note that SteB is taken if« has a neighbor not visited in
The common DFES can now be formulated as the current search level, Stépis a backtracking step, and (in
Rule DFS(u vertex;) StepC) the search-levelof agentr is increased if the current
A) t:=t+1; level of DFS cannot be continued and a new level of search
B) if Jv € N(u) s.t.s(u,v) < 1 has to be established. This may happen in one of three cases.
then 1) The robot got back to the point where the current level
sets(u,v) =t of search has started. It should now start a new search
if t;,(v) <1gotov; by setting a new value fearch-leve] (rather than take
/* am | back in the origin? */ a nap) in order to help other agents.
C) ift;n (1) > tous(u) > 0 then STOP. 2) A change has occurred in the graph (e.g., an obstacle
(the graph is covered). has been moved, which, in our model, means that an
[* backtracking - all neighbors are old */ edge/vertex has been added or deleted) that makes it
D) find an edg€u,v) such thats(v, u) = t;,(w); impossible to backtrack as usual.
E) sets(u,v) :=t; 3) The noise in the sensors makes the robot believe that
F) go tow. option 1 above is true.
endDFS. Note that in this second algorithm each robot needs to remem-

Note that in order to perform a proper backtracking, onger its search-level, and to make more calculations in each

mustbe able to mark the entry edge for each vertex. But if, fafertex it visits. However, the reward is a better performance
some reason, this mark is lost, or the graph is changed, thenwill now be shown.

the desperate searcher is hopeless and will never cover the
graph. Hence, the DFS is not suitable for a noisy environment
where marks and traces are prone to frequent changepbr
misinterpretation. Another problem in using DFS for multi- First assume that = 1 (one agent) and there is no change
robot covering task is how to apply it for several cooperating the graph. ThemNT-WALK-2 is just another variation on
robots. The reason is that once a robot got back to its startidgpth-First Search, that covers the graph in time at rajgst

point, it will (according to DFS) stop there forever, rather the(as proved in Lemma 3.1 of [25]), then starts a new tour and
go around and help his hard-working fellows. SO on.

In order to overcome the above disadvantagesudtilevel For more than one agent, the work may or may not be
DFS approach is suggested. In this method, when an agendistributed between the agents. In the worst case, they will
is facing a situation in which the search cannot continue (ijast repeat each other's steps and create (at miodévels
no backward edge emanates from the current vertex), theofasearch before full covering is achieved. In this case there
new level of search is started by increasing the value of thell be no speed-up. (an example of such a miserable case
search-leve{r) variable, which is individual for robot. This is when all robots are initially placed near one end of a long
variable stores the time when “the new history begins,” i.eand narrow corridor). But even if in general the work is not
any edge/vertex visited before that time is now considered umecessarily evenly-distributed between the agents, the increase
visited by robotr, as opposed to the common DFS where aith number of agents may be useful to reduce the effect of noise.
visited vertices are considered “visited” in exactly the samissume, as before, that the sensors are prone to an error of up

Analysis ofANT-WALK-2
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to « units, as defined in Section IlI-B. Then in the worst case,
« levels of search are needed to guarantee a full coverage of—+::
the graph. Formally,

Theorem 2: k agents obeyingNT-WALK -2 and having sen-
sory noise level of at most units will cover a graph© in
time ¢;, where

< (na/2)|

See Figs. 6 and 7 for the evolution aNT-WALK-2 with
varying amount of noise, and Figs. 8-11 for a plot of the cover
time versus level of noise, for various noise levels and number
of robots. Fig. 12 shows how a group of agents obeying the
ANT-WALK -2 rule can overcome a change in the topology of
the region to be covered.

1+a—‘

V. SIMULATIONS AND EXPERIMENTS

In our view, the main goal of this paper in developing the
necessary theory for proving upper bounds on the covering
times of our algorithms. However, experiments are useful for
getting an idea on the practically more interesting, average cevering by ANT-WALK-1. shape #3, on a 14 x 14 matrix
behavior of the group of robots. Hence, theT-wALK’ Num of Ants = 3; Total area = 161; Cleaned area = 161
algorithms were implemented in tlié programming language  woise 1evel = 0 units; cover time = 550;
on an IBM-Power2 workstation under the AIX operating suic: ase warc i o backtracking) ;
system. The algorithms were tried on several shapes and agent-
numbers, with a subset of the integer lattice as the underlyiRig- 4. Simulated evolution of three agents, oriented by the ANT-WALK-1
araph. The numerical resuls of cove time are presented "¢ il = posrioa o e ruber of v 1 exch . o
Figs. 4-15. An important property of our algorithms is their
ability to overcome noisy conditions, so we simulated each
rule on three levels of noise, namely 0, 10, and 20 units. Due
to the random nature of the noise, it is also important to run thg - -
algorithm several times and find the average time of covering
A comparison between one-shot covering times (Figs. 8 arfgl. & -
9) and average covering time (Figs. 10 and 11) shows that, ¢ i - K-
the average, more robots yield faster covering periods.

In Fig. 8, we show the time of covering versus the num
ber of agents, with varying amount of noise for the thregss
algorithms. Noise is simulated in the following way: when
a noise-level of« is assumed, and the actual smell ds
the sensor reading is interpreted as- pa/2, wherep is
a random number betweenl and 1. The plots in Figs. 9
and 11 show the same information but ordered by noisq
level; it shows thatanT-wALK-1 and -2 are far better than
VERTEX-ANT-WALK in noisy environment, while the latter is
better when no noise is present. The asymptotic behavior (
k grows), however, seems to be similar for all three algorithm
A possible explanation is that cover time in all the algorithmggz
depend onl/k, and this term dominates whengrows (see
Tables | and II). “

Specific examples are shown in Figs. 4-7. In these figuresss, tine - 1072 99%, time = 1340 100%, time = 1341
the gray level in a tile represents the trace intensity i.e. the timctgvm_ng by ANT_RALK-1, shape £, on & 14 x 14 matrix
since last visit to this point. Fig. 12 shows an example with a
blocking obstacle that is removed during execution. It can b&™ °F A7t = 27 Totat area = 163 Cleaned area = 361
seen that the agents detect the change in topology by doifigse level = 10 units; Cover time = 1341;

a multilevel DFS, following theaNT-WALK -2 rule. The other rule: anr wark 1 (no backeracking) :

algorithms will have no problems with this situation as well. . . ,
Fig. 5. Three agents, oriented by the ANT-WALK-1 rule, with random

In Figs. 13_’_15'. we show examples of tMERTEX-ANT- _sensory-noise of ten units. This noise does not avoid the agents from fulfilling
WALK dynamics with the cycle-cover that emerges as a fixethkir mission; however a significant delay is introduced.

91%, time = 440 99%, time = 549 100%, time = 550

74%, time

94%, time 536

I.A. Wagnsr
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100%, time 663

time

91%, time 530

99%,

99%, time = 690 100%, time

Covering by ANT-WALK-2, shape #3, on & 14 x 14 matrix Covering by ANT-WALK-2, shape #3, on a 14 x 14 matrix
Num of Ants = 3; Total area = 161; Cleaned area = 161 Num of Ants = 3; Total area = 161; Cleaned area = 161
Noise level = 0 unitsg; Cover time = 691; Noise level = 10 units; Cover time = 663;

Rule: ANT_WALK_2 (backtracking): Rule: ANT_WALK_2 (backtracking);

Fig. 6. Three agents, oriented by the ANT-WALK-2 rule, which is a genefsig- 7. Three agents, oriented by the ANT-WALK-2 rule, with sensory-noise
alization of the DFS algorithm. Covering here is much more efficient (27dgvel of ten units. Note that even with noise, this algorithm is much faster

of the time required by ANT-WALK-1 rule) due to its backtracking ability. than ANT-WALK-1; it is also advantageous over the ordinary DFS which is
extremely vulnerable to sensing errors.

point of the process. Note that the process does not necessarily

() ANT_WALK_1
1501 T T T Sy ¥

converge to a cycle-cover even if one exists in the graph.

In order to investigate th&ERTEX-ANT-WALK process, a E'ZZZZ\ ]
simulator [53] was written in JAVA which enables a user e e ]
to specify various parameters of the environment, includ- o) ANT VALK 2
ing drawing the obstacles and applying moving obstacles sooo T T
(“junkies”). Zzzo¥ﬁ

We are now in the process of building an experimental e === i
robotic vehicle that is able of laying traces and using them for & VERTEX, ANT WALK
navigation. This will serve to test our model and algorithms N "
in a “real-life” situation. ‘°°°°\\\

5000\\‘- e, ]

@ [

VI. DISCUSSION — s+ 5 1

. - Nno noise, -+- Noise=10, -*- noise=20
We addressed the problem of exploring an unknown area,

with simple a(ge)nts that can leave and sense traces iy 8 Time of'coveri_ngfk versusk—the number of robot;, with varying
the around. and this is their onl av of communicatio amount of sensing-noise, for the three ANT-WALK algorithms. Note the

ground, IS ' y W y At unicallOfitterent scales on the vertical axis. It can be seen that ANT-WALK-2 has
We have shown that even such simple imitations of ansst performance in the given test case.
can cooperate efficiently in their mission of exploration. We
proved that a group ok such ants, obeying either the\T-  to noise in the reading of the sensors. This property comes
WALK -1 or ANT-WALK-2 rule, covers a graph in polynomially-from our usage ofelative rather than absolute value of traces.

bounded time. For a third algorithmvERTEX-ANT-WALK, We  A|so, in using only internal memory for navigation there are
showed an exponential upper bound and presented a fasciggfe disadvantages, e.g.:

ing property of its limit behavior, namely that cycle-covers
of the graph are among the limit cycles of this process. . . : . . .
Another application to the trace-oriented cover methods is the achleyed via expensive odometric or GPS techmques,
maintenance of spanning tree that can recover from change&) the size of memory depends on the complexity of the
in the graph. area to be covered.

An advantage of our algorithms over existing search met@n the other hand, an advantage of our “memoryless” (ac-
ods is in their adaptivity to changes in the environment ardally, shared external memory) approach is the ease of

1) one needs a precise sense of location, which can only be
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noise level =0 ﬂ T )

1 T . r ‘ v
1000T
5004
T e

o P e e —— —

time

3 4 5 6 7 8 2 10

noise fevel = 10
10000, T T

2
= . . . .
5000) \\ 4
M
T o =

noise level = 20

3k
39%, time = 67

15000

10000

5000

*Aﬂi,—¢:i\*1” = —
10

2 5 6 7 8 9
-~ ANT-WALK-1, -+- ANT-WALK-2, -*- VERTEX-ANT-WALK

8%, time - 229

Fig. 9. The same data of the previous figure is here sorted by noise-leve
It clearly shows the VERTEX-ANT-WALK is best in the absence of noise,
while ANT-WALK-2 wins in noisy conditions.

(a) ANT_WALK_1

e T 58%, time = 919 68%, time = 1034 100%, time = 1149
2 3 4 5 6 7 8 8 10
(b) ANT_WALK_2 Covering by ANT-WALK, shape #5, on a 30 x 30 matrix
400 v T T T Yy —re i 1
i Num of Ants = 10; Total area = 338; Cleaned areca = 338
2000 -
1} Noise level = 0 units; Cover time = 1149;
e e e
i 2 3 4 s 8 7 8 9 ° Rule: ANT _WALK_ 2 (backtracking);
(c) VERTEX_ANT_WALK
400! T T T T T T Region changed at time 1000;
2000 . . . . .
=SSN Fig. 12. Ten ants overcoming a change in the environment, by doing a
IR E—— e e . - .
o - - : “f* e multilevel DFS (ANT-WALK-2). It demonstrates the ability of the algorithm

10 noise, ~+- noise=10, -*- noisa=20 to cope with a dynamic environment.

Fig. 10. Time of covering; versusk—the number of robots, with varying
amount of sensing-noise, for the three ANT-WALK algorithms, averaging o 5| necessary; actually our algorithms and proofs apply to
10 coverings. T .
any set of local missions that are geometrically connected by
» neighborhood relations. We can associatems (rather than
ittt S { tiles) with the vertices in the graph, and instruct the robot to

clean the full room before leaving it. If we define a room to
be, say, ann x m square array of tiles, then the effort at every

w/(
i

! S S A vertex is multiplied bym?, but the number of vertices is now
p it — m? times smaller. Recall that the worst case complexity of
m& ] the first algorithm depends on the square of the number of
S vertices; this makes the total complexity much smaller. Please
R note, however, that a mapping from our model to the physical

noise level = 20

@ e — robotic world is not necessarily a direct one. For example,

4000 ] the possibility of a co-presence of more than one robot at

2“°°¥\T ey ] one site can be justified if the vertices represent rooms and

e et o mwaks, v’ the edges—corridors. In some other cases, a more elaborated
_ ; . . oue dnt;lodel may be needed.

e ey o foure. ored Dl i of interest to note that the expected cover-time of
k random-walkers on a general graph with edges and»
vertices is known to be bounded from above Gymn/k),

cooperation when the traces are accessible to all. Hence iwghe walkers are initially located in a certain way (see [12],

feel that such a model is worth thinking about, at least as[®4] for details). Applying it to our planar case, and using the

paradigm. In actual implementation it may be found useful fact that in a planar grapi = O(n), we get an upper bound
combine such a trace mechanism with other, memory-backsidO(n?/k). This seems to be comparable@gn?/k) in our
algorithms to improve the performance and reliability of thanT-waLk-1 andO(n/k) in ANT-WALK-2, however both our
system. algorithms are advantageous over the random one in that their

Although we assumed that the explored area is divideghper bounds do not depend on the initial locations and that
into equally-shaped tiles in the form of a grid, this is natheir cover time is guaranteed rather than expected.

=
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100%, time 100%, time 100%,

i.A. Wagner

100%, time = 3680 100%, time = 4599 100%, time = 4600

Covering by VERTEX-ANT-WALK, shapc #0, on a 8 x 8 matrix

Num of Ants = 1; Total area = 64; Cleaned area = 0

Noise level = 0 units; Cover time = 0;

Heuristic:

Heuristic: (visits, time);

100%,

100%,

Covering by VERTEX-ANT-WALK,

Num of Ants = 2:

Noise level =

929

time

I.A. Wagner

time = 18400 100%, 22999

23000

time = 100%, time =

shape #0, on a 8 x 8 matrix

Total area = 64; Cleaned area = 0
0 units; Cover time = 0;

(visits, time):

Fig. 13. VERTEX-ANT-WALK dynamics has the interesting property thafi9: 14. Here again a cycle-cover is found as a limit cycle of the VER-
cycle covers of the graph are among the limit cycles. Here a HamiltonidfeX-ANT-WALK process; this time we get, in the limit, two cycles covering
path (i.e., a special case of cycle-cover) was found as a limit cycle of tHte graph of files.

process. The black lines describe the edges traversed by the ant in the most
recentn units of time.
3)

Our model was inspired by ants behavior, but can be used
to design practical multi-agent robotic systems. Some of the
potential applications of the smell-oriented navigation model
are in cooperative cleaning of a dirty region with obstacles,
and in the maintenance of spanning tree in a communication
network (see Appendix IlI).

There are several other issues that may be of interest for a
practical implementation of covering algorithms, and should
be further investigated by both analysis and simulations.

1) Continuous Trace-Oriented Walk: Our analysis re-
ferred to discrete tiles on a grid. A challenging question
is whether a continuous version of one (or more) of our
algorithms will work in a continuous setting, and how
fast can it be. Our simulations on such a setting show
very good convergence times, but a rigorous quantitative
analysis will probably give the necessary insight into the
dynamics.

Rate of Covering: The amount of covering per unit
of time is not at all constant during execution, as can
be seen in Fig. 4, where more than 50% of the area is5)
covered within 20% of the total covering time. In some
applications (e.g. surveillance) it may be better to choose
a “quick and dirty” algorithm that covers a significant
part of the area in a short time, rather than one with a
shorter time of total covering.

4)

2)

Explicit Cooperation and Load Balancing: Do all
robots invest about the same effort? We would clearly
like to have as fair work distribution as possible. A more
explicit method of cooperation (e.g. two agents share
experience upon meeting in a vertex) may prove to be
useful in this aspect. This, however, will require each
robot to carry its own memory. Also, we could clearly
see in simulations that the initial distribution of locations
has a significant effect on balancing the load; if robots
are fairly distributed, or are separated by walls, they do
better in terms of cover-time.

Dependency on the ShapeAs shown in our analysis,
the upper bound on covering time depends not only on
the area of the region but also on its shape, as represented
by the cut-resistance parametgr (see Theorem 1).
Calculating p analytically is possible only for simple
cases; however our simulations show that as the shape
becomes more complicated (and heneegrows) it
takes a longer time to cover. But this point needs
a more detailed quantitative investigation; i.e. taking
several shapes (with the same area) and comparing their
covering time andp-values.

Reconfiguration Time: If the environment changes
during the process, but the frequency of changes is
smaller thanl /(cover-tim@, then the robots can clearly
handle the problem. However if faster changes are
allowed, a complete cover may be impossible. See the
on-line JAVA simulator [53] for a demonstration.
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by the same agent, in the opposite direction

(z,y)€S

Summing over all thé: agents, we get the Lemma. O

Proof of Lemma 4:If g(x;) = g(x;+1) then our Lemma is
clearly true. Otherwiseg(z;) < g(z;4+1) and for each edge
(xp,xq) In Ci,1+ 1) (i.e. p < 4, ¢ = i+ 1) we have that
f(xg,zp)— flzp, 24)+1 2 g(xi41) — g(z;). The same is true
for all the edges in this cut; hence the net flow across the cut
C(i,i+ 1) is lower-bounded as follows:

12%, time = 1

100%, time - 100%, time = 17600

100%, time =

|F(S[1,4]: S[i + 1,n]) — f(S[i +1,n] : S[1,4])]
> |C3, i+ D] - (g(ziv1) — g(@:) — 1).

. But this net flow is also bounded above byLemma 3), so
¢ we get that

100%, time = 35200 100%, time = 43999 100%, time = 44000 |C(i,i+ 1)| . (g(-Ti—i—l) _ g(-Tz) — 1) < k

Covering by VERTEX-ANT-WALK, shape #0, on a 8 x 8 matrix

Num of Ants = 4; Total area = 64; Cleaned area = 0 and hence

Noise level = 0 units; Cover time = 0; k

Heuristic: (visits, time); 9(@itr) = glz:) S 1+ |C@i, i+ 1)

Fig. 15. Same region as in the previous two figures, but this time with foyghich yields the lemma. O

ants; a triple cycle-cover off is achieved in the limit. An open question is . .
whether or not the time of convergence to such a limit-cycle can be reasonably”r00f of Theorem 1:Once started, our agents never rest;

bounded. they traverse an edge in every clock cycle. Even when two (or
_ ) . . . . _more) agents occupy the same tile, they can both use the next
The model we described in this paper is fairly simplgyie hecause we assume that they have different clock-phases.

but seems to yield interesting results and to pose intriguirpgsnce, after units of time, the total flow in the graph is
challenges for both theoreticians and implementers of robotic

systems. Z P
APPENDIX | (z,y)ER
A. Proofs (Recall thatf(z, y), the flow along an edgér, ), is defined

as the number of passages so far along the edge in-the,
direction). Assume, in contradiction, that the timespecified
by the theorem has passed, yet there is an édgg) such
that f(z,y) = 0. Corollary 4 implies that no edge has a flow
larger thankp(G) + n. Hence, the total amount of flow i&
can be bounded from above

Proof of Lemma 1:According to the algorithm, a robot
located atw should choose an outgoing edde,v) with
smallestvalue of s(u,v). Then, in course of traversing the
selected edge, the robot sets the lakel, v) to the current
clock value (step C), and, by doing so, makés,v) to be
the largestamongu’s neighbors. So the edde:, ») now has
the lowest priority. In other words, one may define a queue
between the edges emanating frenirhis queue is prioritized
by the value ofs(., .) on each edge, and every timés visited,
the edge on the head of the queue is selected and then this edge
is moved back to the tail of the queue. Hence, the edges going
out of « are visited in some cyclic order, and this order, once
set, is never changed. We conclude that oficey) has been (using |E(G)| < nA/2). Dividing by & we get that the time
visited, it will be visited again after exactly, other visits to passed cannot exceéd/2)A(p(G) + n/k), in contradiction
u. This implies thatP, is periodic with periodd,,. O with the assumed time. O

Proof of Lemma 3:For each agent;, let us denote by Proof of Theorem 2:If o« = 0 thenANT-WALK-2 cannot be
fi(x,y) the number of times it traversed the edgey) in this worse than the common DFS which is known to cover the
direction. Considering a cutS : S), it clearly holds that the graph in time bounded above IB/E| < nA/2. If there is
number of times an agent has crossed the cut in one directimise, i.e.«« > 0, then, in the worst case, an edge may need to
cannot differ by more than 1 from the number of crossingbge traversed up to-f«a times per search-level before the robot

total flow inG = > f(u,v)
(u,v)CE
([E(G)| = D)(kp(G) +n)

<
< (n/2)A(kp(G) +n)
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TABLE |
COVERING TIMES FOR THE THREE ALGORITHMS RUNNING ON A 14 X 14 MAZE-SHAPE WITH A VARYING AMOUNT OF NOISE. NOTE THAT THE TIME
IS NOT ALWAYS MONOTONICALLY DECREASING IN SOME CASES ADDITIONAL ROBOTS DISTURB THE EFFICIENCY OF THE WHOLE GROUP

rule noise | #robots: 1 2 3 1 5 6 7 8 9 10
ANT- 0 1159 325 3530 320 320 307 143 275 123 123
WALK- 10 2721 836 1341 573 883 H68 267 653 501 484
1 20 13461 2707 2402 2375 1656 513 836 972 265 262
ANT- 0 1038 1219 691 270 270 270 266 183 60 60
WALK- 10 2472 BIT 663 836 H46 576 652 581 211 270
2 20 4105 1349 1079 951 840 734 613 383 370 165
VERTEX- 0 445 252 172 140 118 125 88 123 69 69
ANT- 10 6965 2478 2060 1474 1469 1212 1035 1010 863 734
WALK 20 12839 6222 4320 3212 2768 1727 1681 1691 1671 1322
TABLE I

COVERING TIMES FOR THE THREE ALGORITHMS RUNNING ON A 14 x 14 MAZE-SHAPE WITH A VARYING AMOUNT OF NOISE, AVERAGED ON TEN COVERINGS THE
TABLE SHOwsS THAT ON THE AVERAGE, MORE RoBOTS BRING A FASTER COVERING, WITH SOME EXCEPTIONS CAUSED BY THE RANDOM NATURE OF THE NOISE

rule T0ISC | #robots: 1 2 3 4 5 6 7 3 9 10
ANT- 0 156 166 135 105 81 88 55 52 A3 36
WALK- 10 2673 1234 955 636 5H5H5 50T 457 324 317 263
1 20 3802 1987 1230 963 8h6 771 531 473 413 419
ANT- 0 884 480 356 185 150 127 108 118 77 66
WALK- 10 3396 791 591 506 377 279 235 200 167 194
2 20 3855 897 649 478 454 446 302 254 243 235
VERTIEX- 0 660 312 239 169 147 118 110 93 7 65
AN'T- 10 3710 1083 647 395 374 339 269 331 262 231
WALK 20 4646 1991 1228 836 696 660 423 480 300 372

can “see” that this edge has indeed been visited. Therefore n@he theorem provides a worst case bound which is expo-
edge is traversed more thar-« times before all its neighbors nential in the graph diameter. We believe that this bound is
are traversed once. On the other hanthbots traversé times very far from tight. The simulations we conducted show that
more edges than one does, hence their cover timeannot this algorithm performance is close to those associated with
exceed[“’T‘ﬂ timest;—the cover time of one noiseless robotthe edge based algorithms, although it is sometimes inferior,
O especially when sensor inaccuracy is high.

A system of agents obeying this rule is guaranteed to cover
the vertices, and works quite well in simulations. Its covering
time is upper bounded in the following theorem.

Theorem 3: Following theVERTEX-ANT-WALK rule, a group
of k£ agents will cover the vertex set of a graghwithin time

In certain scenario there is no need to coverpalssages tx, such that
between the tiles and the previous algorithms, which aim
to cover all edges require too much. Therefore, one can e < ——
suggest another algorithm which makes its choice between all

accessibldiles and uses a trace left on thiee itself as a basis \yneren is the number of verticesy is the maximum degree
for its decision. The followingvERTEX-ANT-WALK algorithm 54 4 is the diameter ofG.

uses this principle. The tracgw) left in the vertexu € V(G), Proof: If (u,v) is an edge in@ thenw should be visited
is, again, the time of the visit. The local decision rule for gt |east once evenA visits to v, since after each visit te
the ant being in locatiom is to go to the neighbor with the gne of its neighbors is visited and hence aftewisits tow, if
least¢-value. Formally as 1« has not been visited so far, alls neighbors have-value
Rule VERTEX-ANT-WALK(u vertex;) grater thans(w), henceu should be visited no later than after

APPENDIX Il

A. VERTEXANT-WALK—A Vertex-Oriented Search

At=t+1 the next visit tov. Hence we get
B) find a vertexv in N(u) such that

() = minye n g {s(w)}; f(u) < A(f() +1) )

(if there is more than one such neighbor -

make some heuristic decision) where f(z) denotes the number of visits to nodeso far.

/* now drop some trace on */ Let us assume that some vertex, sgy has not yet been
C) sets(u) :=t¢; visited, hencef(xz1) =0. Now consider the farthest vertex
D) go tow; from z;, say x4, and a shortest path between thdm =

end VERTEX-ANT-WALK. x1,%9,...,%4. Clearly g, the length of the path, is smaller
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than or equal tal, the diameter of7. Using (5) we get Now let us assume that a network is given in which nodes
9 9 and edges occasionally become ineffective, and we need to
Jleg) S A+ Af(wg-1) S A+ A"+ A f(z4-2) keep a distributed tree that spans the network, i.e.—each
< SAT fan) S AT fay). (6) (effective) nonroot node should know who his “father” node
is in the tree. If our agents have distinets, say1,2,---,k,
then they can leave a signature at each vertex in the form of a
pair (¢,id), wheret is the last time an agent visited the vertex,
andid is his unique identification number. Clearly, after our
agents have covered the graph, no two vertices will have the
same signature. Hence a spanning tree can be established by
nA¢ having each node taking his greatest neighbor as a father; here
IS T “greatest” means under the lexicographic order of the pairs
(t,id) among the neighbors. If a node or an edge is crashing,
we are guaranteed (by Theorem 1, 2, or 3) that after no more
an (the respective), units of time the tree will recover.
The advantage of the above algorithm over existing methods

But sincef(x;) =0 we havef(z,) < A?, and the total amount
of visits in G is hence bounded above k&y(n — 1).

Assuming that agents are active on the graph, aftemits
of time there have been a total sf visits to vertices in the
graph, hence

We assume that initially all agents are located on distin
vertices, hence wheh — oo, t; goes to 0 as the cover is

immediate. for keeping cycle-free communication graphs [20], [38] is that

_The _above is only a worst-case upper _bou_nd; Actuall n our method onlyk of the n processors need to work at a
simulations show a much better behavior. This gives rise to the

hope that a tighter upper bound will eventually be discovere'. e—the others can proceed in their regular jobs.
The dynamics involved with thigERTEX-ORIENT ANT-WALK

has the interesting property of having cycle covers of the graph

among its fixed points, i.e. once theagents are in a loop of [1] F. R. Adler and D. M. Gordon, “Information collection and spread by

one (or more, up t@) cycle(s), they continue hoping on these networks of patrolling ants,Amer. Naturalist vol. 140, no. 3, Sept.

cycles forever. In the case of a single agent, such a cycle jg R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovasz, and C. Rakoff,
a Hamiltonian cycle; see Fig. 13. Forka> 1, its a 2-factor “Random walks, universal traversal sequences, and the complexity of

“ ” : maze problems,” irProc. 20th Annu. Symp. Foundations Comput.,Sci.
(or “cycle cover”) of the graph. Sge Figs. 14 and 15 for SOME o1 Juan, Puerto Rico, Oct. 1979, pp. 218-223.
examples. Hence, such a dynamic may serve as a heuristic far w. Alt, “Biased random walk models for chemotaxis and related
finding a Hamiltonian path. diffusion approximations,J. Math. Biol, vol. 9, pp. 147-177, 1980.
| 9 h Kk 57 P h h h hi [4] G. Giralt and C. Weisbin, EdsAuton. Robots Planet. Explorat., Auton.
n another work [57], we have shown that a more sophis=" ropots vol. 2, pp. 259-362, 1995.

ticated approach to the vertex process achieves a cover tinf# J. Borenstein, H. R. Everett, and L. Fenyavigating Mobile
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