
918 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 15, NO. 5, OCTOBER 1999

Distributed Covering by Ant-Robots
Using Evaporating Traces

Israel A. Wagner, Michael Lindenbaum, and Alfred M. Bruckstein

Abstract—Ants and other insects are known to use chemicals
called pheromones for various communication and coordination
tasks. In this paper, we investigate the ability of a group of
robots, that communicate by leaving traces, to perform the task
of cleaning the floor of an un-mapped building, or any task that
requires the traversal of an unknown region. More specifically, we
consider robots which leave chemical odor traces that evaporate
with time, and are able to evaluate the strength of smell at every
point they reach, with some measurement error. Our abstract
model is a decentralized multiagent adaptive system with a shared
memory, moving on a graph whose vertices are the floor-tiles.
We describe three methods of covering a graph in a distributed
fashion, using smell traces that gradually vanish with time, and
show that they all result in eventual task completion, two of them
in a time polynomial in the number of tiles. As opposed to existing
traversal methods (e.g., depth first search), our algorithms are
adaptive: they will complete the traversal of the graph even if
some of the a(ge)nts die or the graph changes (edges/vertices
added or deleted) during the execution, as long as the graph stays
connected. Another advantage of our agent interaction processes
is the ability of agents to use noisy information at the cost of
longer cover time.

Index Terms—Ant-robotics, covering, exploration, multi-agent
systems, robotics.

I. INTRODUCTION

ONE of the basic theoretical (and practical) problems in
multiagent systems is how to design adaptive rules of

behavior for the individual, that will lead to a desired colony
behavior while reducing cost in terms of communication
overhead and hardware complexity. We shall consider a task
in which the floor of a building has to be cleaned by a group
of autonomous robots that do not have a prior knowledge
of the building’s floorplan. We model the floorplan of the
building as being composed of small rectangular regions (tiles
or rooms), all of the same size, and assume that a tile/room
can be cleaned in one unit of time. To help their navigation,
the robots are allowed to leave traces while they walk, e.g.
by means of odor, heat, or color trails. We further assume
that the intensity of traces decreases with time, therefore by
comparing the trace levels at two neighboring tiles, the robot
can deduce which tile was visited more recently. The state

Manuscript received April 22, 1996; revised February 7, 1999. This paper
was recommended for publication by Associate Editor R. Chatila and Editor
S. Salcudean upon evaluation of the reviewers’ comments.

I. A. Wagner is with IBM Haifa Research Laboratory, Matam, Haifa 31905,
Israel (e-mail: wagner@haifasc3.vnet.ibm.com).

M. Lindenbaum and A. M. Bruckstein are with the Department of Com-
puter Science, Technion, Haifa 32000, Israel (e-mail: mic@cs.technion.ac.il;
freddy@cs.technion.ac.il).

Publisher Item Identifier S 1042-296X(99)08505-5.

of cleanness of the path can also serve as a trace, if the
dust is slowly falling back on the floor, and hence enables
a chronological comparison between tiles in terms of agent
visits. See Fig. 1 for an example. The topology of the building
may change while the robots work; e.g. people or furniture
may move and doors may open or close, hence a preliminary
phase of floorplan mapping will not be of much help here.
Such a problem is critical in case of a damage to a nuclear
reactor, where robots are the only creatures that can survive
the radiation and move around to clean hazardous waste
[33]. Central control is usually not possible since the strong
radioactive radiation avoids almost any possibility of wireless
communication. Similarly, one might consider a surveillance
task in which robotic guards have to visit the rooms and
corridors of a dynamic art gallery, and to guarantee that each
and every room and corridor is visited frequently enough.

In this paper, we present systematic methods for local,
cue-based operation of a group of robots that solves the
above problems. As a (simplifying) mathematical model, we
use graph traversal, inspired by ant foraging, based on the
assumption that the world is divided into vertices (tiles) and
edges (tile-separating lines), and an ant leaves a constant
amount of pheromone at each point it visits. These traces
are later used by the ant and its fellows as a memory of the
latest time this point has been visited so far. We shall describe
three search algorithms, prove their convergence, bound their
worst-case time complexity, and test them empirically.

As far as we know, this work presents the first performance
analysis of a model that considers thecooperativepotential
of trace-oriented behavior in terms of time-complexity, under
noisy circumstances.

A. Related Work

1) Robotic Covering:Covering is an important applica-
tion of robotics; researchers have investigated various aspects
of the topic, and we shall only be able to present a short
sample here. In [10], the issue of inter-robot communication
was addressed in the context of various missions, among them
grazing—i.e., visiting every point of a region for purposes
of object-fetching. There, a reactive model of behavior is
presented, and simulations show that detailed communication
does not contribute much to the performance. In [4], many
experimental works are presented for planetary exploration by
autonomous robots. Heuristic navigation methods are given
in [28] for path planning of an autonomous mobile cleaning
robot, and in [37] for a robot exploration and mapping strategy.
In [32], an algorithm is presented for exploration of an

1042–296X/99$10.00 1999 IEEE

WAGNER et al.: DISTRIBUTED COVERING BY ANT-ROBOTS USING EVAPORATING TRACES 919

Fig. 1. System of rooms divided into square tiles with a dynamic obstacle. Two cleaning robots are shown with their directional smell traces. Note
that the traces degrade with time.

undersea terrain, using exact location sensors and internal
mapping. Practical implementations of covering algorithms
have been demonstrated in [58], [42] and more recently in
[15]. In [58], a set of robots is described that help clean a
railway station, using magnetic lines on the floor as guidelines.
The method is reported to work well, but is limited to pre-
mapped regions in which magnetic beacons have been located.
In [42], a cooperation of a team of robots is created by
an explicit level of inter-robot communication. Each robot
can choose one of multiple possible behaviors, according to
its specific conditions. In one of these behaviors the robot
plays the role of a janitorial service man, by cleaning the
dust around it. In [15], a competition is reported between
various robots on cleaning an apartment-like region, including
furniture. Cleaning and other household robotics applications
are discussed in [35]. Other applications of robotic covering
are in cleaning hazardous waste [33] and demining, i.e.,
the removal of mines from old mine fields. A centralized
multirobot system for the exploration and cleaning of mines is
presented in [41] with experimental results. A more recent
work [46] suggests a distributed behavior-based approach
to the control of a group of mobile robots performing a
clean-up and collection task, empirically demonstrating its
performance. The special case of covering a finite, discrete
space was addressed in various ways. In [24] and [23], a
discrete problem of graph-exploration by a single robot was
solved using markers and assuming that the robot can use

a stack of memory. In [54], the dirt on the floor served as
memory to help the robot’s navigation, while in [55] and
[56] a vanishing trace was used for that purpose. In the
last two papers, as well as in the current work, the robots
are assumed to be finite-state machines, i.e., they use only
a constant amount of internal memory, the size of which is
independent of the size of the space to be covered. In most of
the work mentioned above, solutions are presented either by
simulation or by actual hardware implementation, for either a
single- or a multi-robot system. The mathematical analysis of
such multiagent systems, however, is still in its very beginning,
as has been pointed out in [7] and many other papers. Such
an analysis is desired for both proving the correctness of an
algorithm and evaluating its performance. In the current work
we suggest a preliminary model and some novel techniques
that may be found useful in the analysis of covering by robots.

2) Mechanisms for Leaving Traces:One way to mark a
trail is by using odor, like the pheromones used by various
insects. Experiments with an insect-inspired robot are reported
in [44], where the robot has an odor marking and detection
system. Another way of marking is by heating the floor. Ac-
cording to several experiments (reported in [5], [43] and [45])
the temperature distribution at a distance from the trail
and at a time after laying the trail can be approximated by

(1)

where is a time-variant intensity function of the

920 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 15, NO. 5, OCTOBER 1999

thermal path, and is a constant. In a later work [45] an
experimental study is reported that shows how thermal trail
can be traced several tens of minutes after being marked.

3) Computing: Graph search is an old problem; several
methods exist for deterministic (e.g. [52], [26]) random (e.g.,
[2], [12], [14]) and semi-random ([27]) covering, but a lot
more needs to be done in order to make the theory useful
in the context of robotic covering problems. A step toward
a trace-oriented theory of search was done in [11] and [13],
wherepebblesare used to assist the search. Pebbles are tokens
that can be placed on the floor and later be removed. In [13], it
is shown that a finite automaton with two Pebbles can search
all mazes, but no timing analysis is done. In a sense, our
work is a generalization of this work, since one may use
“diminishing pebbles” or “deflating tokens” as a model of
odor markings. We consider our algorithms to be a reasonable
trade-off between the rigid, highly sensitive DFS on one hand,
and the absolutely adaptive (but very time-consuming) random
walk, on the other hand. Note that the problem of finding the
shortest traversal of a graph, is NP-complete even if the graph
is completely known, its vertices are grid points and its edges
are grid-lines [34].

4) Biology: Some aspects of the behavior of continuous
smell-oriented swarms were investigated in [40], where a
differential equation model is used to investigate the stability
properties and the patterns generated in the process. On the
biological side, several models have been suggested for the
social behavior of ant-colonies, e.g., correlated random-walk
in [1]. In a different context, models were investigated for
chemosensitive cells (like bacteria or leukocytes) in a random
walk that is biased by the concentration of chemicals (e.g.,
[3]). The foraging and trail-following behaviors have been
thoroughly investigated in several works; see e.g., [29] and
[21]. Analytical work was also inspired by trail-following
dynamics, in both a continuous, deterministic case [17] and
a gridded, probabilistic setting [18].

The rest of the paper is organized as follows: in the next
section we state the problem formally, and state the main
results. Section III presents the first algorithm,ANT-WALK -1
with its analysis, and Section IV is devoted to an improved
algorithm, ANT-WALK -2. Section V describes our simulations
and experiments while open questions and further research
directions are the topic of the discussion in Section VI. Ap-
pendix I exhibits the proofs deferred from the body of the
paper. Appendix II is devoted toVERTEX-ANT-WALK —a vertex
oriented method of search, while in Appendix III we discuss
an interesting application of trace-oriented walks for creating
and maintaining a spanning tree in a dynamic network.

II. PROBLEM DEFINITION AND SUMMARY OF RESULTS

The task considered here is the traversal of a region by
a group of robots which can carry out useful tasks such as
cleaning or guarding this region. We are interested in the
capabilities of robots working in a distributed, unsupervised
mode, i.e., the robots determine their motion themselves from
local cues and do not rely on external guidance. The aim may
be either to cover the region as fast as possible or to move

so that all parts of the region will be covered as “uniformly”
as possible. This task gets more complicated if there is more
than one robot in the group, but, as far as we know, was not
considered analytically even in the context of a single robot.

Our approach is computational and considers this task in
a generic, abstract context. It uses a graph
to describe the parts of the region to be covered and the
connections between them. In this graph every vertex rep-
resents an atomic region (“tile” or “room”) and every arc
represents a neighborhood relation between two such atoms.
Our assumption is that the robots are small enough such that
several robots can occupy the same tile/room simultaneously.
The task is to cover the graph “as fast as possible”. To achieve
this task we specify several strategies. Every such strategy is
a definition of a local behavior rule followed by the robot.
A strategy is considered better if it covers the region faster,
and the efficiency of the different strategies is evaluated by
measuring the time from the start until the last yet unvisited
tile is reached.

The difference between the strategies we propose is in
the assumption we make regarding the amount of memory
available to every robot, and regarding the “trace leaving”
behavior. Specifically we shall consider either robots which do
not have any memory or robots which are equipped with some
small memory enabling them to backtrack. We also consider
robots which leave traces inside a tile (i.e., on vertices)
versus robots which leave their traces on the passage between
different tiles (i.e. on edges).

In analyzing the strategies we shall look for several behavior
characterizations: the first obvious one is that the robots indeed
accomplish their task and reach every part of the region. We
show that this property, denotedconvergence, indeed holds
for all the proposed strategies even though these strategies are
extremely simple, and the region is unknown, may be arbitrar-
ily complicated and may even change during the operation.
Moreover, the covering processes converge even if some of
the robots cease to work before completion; in such a case,
the remaining ones will eventually complete the mission.

A second important characterization is thetime required
to cover all the region. We provide here rigorously derived
bounds which quantify the time required to cover the region
in the worst case. In particular we show that two of the local
rules yield a cover of the whole region in time polynomial in
the number of tiles. A particular adversary example shows
that the quadratic time predicted by this bound is indeed
required in some situations. We also simulate the local-rule-
driven behavior over several particular scenes and show that
in these cases the global performance is actually better.

A third interesting characterization is thespeedupachieved
by using more than a single robot. Both the rigorous bounds
and the simulations address this issue and show that a substan-
tial reduction in cover-time is achieved by using more robots.
This, however, is only true up to a limit where additional
robots are of no help.

The first local rule, denoted ANT-WALK-1, requires no indi-
vidual memory on each machine. The only (shared) memory
assumed comprises of the smell traces that are being laid on
the edges of the graph. Denoting by the time needed to

WAGNER et al.: DISTRIBUTED COVERING BY ANT-ROBOTS USING EVAPORATING TRACES 921

cover all edges of the graph byagents that follow this rule,
we prove the following upper bound on.

Theorem 1For ANT-WALK-1

where is the maximum vertex degree in
is related to the measurement noise (0 implies that

the trace intensity sensors are perfectly precise), and
is the cut-resistance of , defined in the sequel and obeying

with being the edge-connectivity of .
The second rule of MOTION, ANT-WALK-2, is a generalization

of the common Depth-First-Search method. It relies on a
limited amount of memory in each agent, and the ability to
control its trace-laying mechanism. In reward, we get the
following improved upper bound on the performance.

Theorem 2For ANT-WALK-2

where all notations are as before.
The third method,VERTEX-ANT-WALK is similar to the first

one, but assumes that smell traces are laid on the vertices
rather than the edges. For this method we show that

Theorem 3For VERTEX-ANT-WALK

where is the diameter of .
Although the upper bound forVERTEX-ANT-WALK is quite

high, our simulations show that its performance is actually
in the same order of magnitude of the other two algorithms
(See Figs. 8 and 9). Another interesting property of the third
algorithm is that the paths taken by the robots sometimes
converge to cycle-covers of the graph of tiles; see Figs. 13–15.

III. ANT-WALK -1: COVERING WITHOUT INDIVIDUAL MEMORY

We consider a graph as a model for the floor
to be cleaned. Every vertex in this graph corresponds to a tile
on the floor, and every edge—to the boundary between two
neighbor tiles. Also, we assign for each edge two “smell
labels”: which is the time of the most recent traversal
of the edge in the -to- direction, and similarly for the
other direction. All -labels are initially reset to 0. See Fig. 2
for an example of a floor and its graph model. We assume that
each time an edge is traversed, it is marked by a fresh
trace of odor, , that overrides the previous trace on this
edge in the direction; remains unchanged.

We want our group of agents (e.g., ants, robots) to traverse
all the edges of the graph without carrying any internal
memory. The only traces that are allowed are in the environ-
ment—these are the times of most recent visits to each edge
in each direction, coded by the trace left there by an agent. In
this rule of motion, an ant visiting vertex checks
the labels on all edges emanating from, in the direction from

outside. Then it goes to an edge that has the smallest trace
on it, that is—the edge that was not visited for the longest
time. In the course of traversing the edge, the ant leaves there
a constant amount of pheromone. The amount of smell on
an edge , denoted , decreases slowly with time,

so by “smelling” two edges one can say which one of them
was visited before the other. (This ability may be limited by
a sensing error —in the presence of which, one can only
distinguish between traces that differ by more than“smell
units.” More on this in Section III-B in the sequel.) Hence,
leaving a smell trace on at time is similar to writing
the , the time of traversing this edge. For sake of simplicity,
we’ll denote traces by the time they were left. In this discrete
setting we assume that if an ant is located at a node
it can move along any of the edges emanating fromto one
of its neighbors. The set of’s neighbors is denoted by .
Formally, the first and simplest local rule of motion to be
considered is:

Rule ANT-WALK-1(u vertex;)
A) ;
B) find an edge emanating from such that

;
(if there is more than one such neighbor -

make some heuristic decision)
(while moving from to ,

drop some pheromone along the edge)
C) go to , and in the process set ;
endANT-WALK-1.
Note that more than one agent may occupy a tile at the

same time; however the agents are exiting the vertex in slightly
different times. The order of exiting the tile can be determined
by some priority between the agents, which may be determined
either by a unique hard-coded ID, a random phase on the clock,
or from geometrical considerations (e.g. the agent coming from
the north is the first to select an edge, the one coming from
the east is the next and so on). The actual way to implement it
may be to cause each robot to have a slightly different phase
on his clock, or even use a random phase, which should avoid
collisions with high probability. See Fig. 2 for an illustration
of the algorithm.

A. Analysis of theANT-WALK-1 Algorithm

In this subsection we shall prove an upper bound on the time
complexity of theANT-WALK -1 algorithm, assuming noiseless
conditions, i.e., 0. Noisy sensing will be considered in the
next subsection. The basic idea in our analysis of the cover
time is a proof that the number of passages along one edge
cannot differ too much from the number of passages along any
other edge in the graph. First, consider the sequence, which
is the sequence of vertices visited just afterby all robots,
ordered chronologically; that is—each time a robot leaves
and goes to, say,—then is added to the sequence. will
denote the length of this sequence, i.e. the number of times
node has been left so far. Due to the rule of motion defined
above, we can show that

Lemma 1: For each vertex is a periodic sequence
with period , where is the degree of in .

The proof of this Lemma, as well as the rest of the proofs
in this paper, is found in Appendix I.

From now on we shall not use “smell” or “traces” anymore;
rather, we shall only rely on the fact that the neighbors of each
edge are always visited in the same cyclic order, no matter

922 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 15, NO. 5, OCTOBER 1999

Fig. 2. Four cycles OF ANT-WALK-1 are needed to traverse a floor with four tiles. Also shown is the corresponding directed graph with the smell-labels
on its edges. Note that there are two labels on each edge, to designate the trace intensity in each direction of the edge.

what this order is. Hence our results apply as well to any
other local decision method that guarantees the cyclic-order
property.

Let be theflow along edge , defined as the
number of times any robot went over this edge in the direction
from to .1 Using to denote the sequence of post--visits
(as defined above, before Lemma 1), the periodicity proved in
Lemma 1 implies that for any neighborof

(2)

Therefore theANT-WALK -1 algorithm guarantees that two
edges emanating from the same vertex will not differ too much
(i.e., by more than one) in their respective number of visits,
or in other words: the flow from a vertex is fairly distributed
among its neighbors. We state this formally as follows:

1Please note that bothPu and f(u; v) are time-dependent; we, however,
omit the time parameter in order to simplify our notations.

Lemma 2: If and are both neighbors of, then, at all
times during execution ofANT-WALK -1,

(3)

Proof: implied by (2).
A similar fairness among the edgesenteringa vertex does

not necessarily hold.
Remark: The proof relies on the assumption, stated earlier,

that several robots may reside in the same tile. Furthermore,
during each cycle (i.e., between timeand time), the
robots move sequentially and every robot may plan its move
based on the traces left by all previous moving robots including
those left by robots that move in the same cycle (before it made
the move). As was mentioned above, such a behavior can be
achieved with high probability by assigning a random phase
to the clock of each robot or, alternatively may be guaranteed
by setting hardwired priorities to the robots.

We shall now bound the total flow through any cut in.
Let be a (real) subset of the vertex-set of, and write

for . We denote by the set of edges having a

WAGNER et al.: DISTRIBUTED COVERING BY ANT-ROBOTS USING EVAPORATING TRACES 923

source in and a destination in . The flow through the cut
is then defined to be

Lemma 3: At all times, and for all cuts in

where is the number of agents travelling in.
Combining the fairness of flow (Lemma 2) and its bounded-

ness (Lemma 3), shows that the intensity of flow cannot differ
too much between vertices in.

Let denote the maximum flow along an edge emanating
from a vertex

The flow associated with every edge emanating
from satisfies (Lemma 2).
Let be the set of all vertices ordered in
increasing order of , i.e.,

Let be the subset , and consider the
cut between and

In the following lemma we show that the function has
a discrete “smoothness” property:

Lemma 4: At all times and for all

It follows that the difference between the-values of any
two nodes in cannot become too large:

Corollary 1:

where is the number of vertices in .
Also, since is bounded below by , the edge

connectivity of 2, it can easily be seen that
Corollary 2:

Using the edge connectivity has a disadvantage: its value
for is strongly biased by extremal areas of the graph, e.g.
one narrow corridor may impose a lowvalue on an otherwise
dense graph. Rather, we suggest a more realistic measure of
the “resistance” of to the motion of trace-oriented agents
in it. For this purpose we define thecut-resistanceof a graph
as follows:

2The edge-connectivity of a connected graphG is defined [8] as the
minimum number of edges that need to be removed in order to disconnect
the graph, i.e., ifG has edge connectivity�(G), there is no set of�(G)� 1
edges the deletion of which will disconnectG.

Definition 1: Assume that is the set of ver-
tices in a graph . For a given permutation we define
the cut-resistance induced by this specific permutation to be

and the cut-resistance of is defined as the maximum of
over all possible permutations in

The following observations on can easily be verified:

1) if is a path along vertices, then ;
2) if is a circle with vertices, then ;
3) if is the complete graph (), then

4) if is an grid-graph then
;

5) for every graph, , since any cut
has at least edges in it.

Intuitively: the denser the graph, the lower its cut-resistance.
The following corollary results from Lemma 4.
Corollary 3:

Recall that is the maximum flow along an edge
emanating from , and that this amount (according to Lemma
2) is at most 1 unit more than the minimum flow along an
edge emanating from. Hence we get

Corollary 4:

Remark: Another function that could come to mind here is
the edge-expansion factorof the graph, defined as

but it should be noted that is better suited for our
purposes, since it represents the conductivity of the whole
graph, not only the extremal (i.e. worst) regions in it. For
example, consider a graph which constitutes of two complete
subgraphs each isomorphic to , with one edge
connecting them. The edge-expansion factor ofwill be as
small as , while its cut-resistance will not be much different
from that of the complete graph , since almost any cut has
at least edges in it.

Let denote the time needed to cover the edges of a
connected graph by agents that follow theANT-WALK -1
algorithm. The following theorem establishes an upper bound
on this time.

924 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 15, NO. 5, OCTOBER 1999

Fig. 3. Hard case for the ANT-WALK-1 rule. There aren vertices, and about1:25n edges. The diameter is about0:8n, and the time needed to traverse it
may be as long asO(n2). The dotted arrows show the worst case where each triangle of vertices is a “trap” that causes the ant to go back to its starting point.

Theorem 1:

where is the maximum vertex degree in
and is the cut-resistance of .

Remark 1: The bound we proved is tight up to a constant,
as can be seen from the example in Fig. 3, where an ant
goes back and forth several times before covering the graph.
Such problems can sometimes be cured using a heuristic to
resolve ties among edges with equal traces on them. Another
solution is to allow backtracking as will be shown in algorithm
ANT-WALK -2 that is described in the next section.

Remark 2: The expression in parentheses, , can
be explained intuitively as follows: If the graph is dense, its
cut-resistance is small and the term is significant,
i.e.—more robots deliver a faster cleaning. On the other hand
if is sparse is large and increasing the number of
robots does not make much sense. This intuitive interpretation
was also observed in our simulations.

B. Effect of Noise and Sensing-Errors on
the Dynamics ofANT-WALK-1

In reality, sensors and effectors are not perfectly reliable
and noise can distort their operation. The following is a rather
skeptical statement was made in [16]:

... [sensors] ... simply do not return clean accurate
readings. At best they deliver a fuzzy approximation
to what they are apparently measuring, and often they
return something completely different.

However, the effect of noise depends on the type of algorithm
that is being used in the system. In a multiagent system the
noise has another aspect—the individual agent cannot always
be sure as for the reliability of the others, hence a good
multiagent algorithm should be tolerant to failures occurring
in interagent communication. Formally, if one agent has a
fault probability of , then an algorithm that relies on the
correct behavior of all agents will have failure probability
of , which tends to 1 as grows.

We claim that our approach to covering problems is well-
suited for noisy sensors/environments, since it does not rely
too strongly on any specific data or hardware, but only on
relative quantities which do not suffer so much from the errors
in sensor readings. Let be the amount of noise in the sensor
measurement. That is, if the smell along edge is equal
to , then the noisy sensor may tell us anything between

and . Such a level of noise implies
that a sensor (or an algorithm that relies on the sensor) cannot
distinguish between a trace that was left at some timeand

one that was left at time . This causes a deviation from the
basic rule of behavior which implies that the difference in flow
(i.e. number of passages) between two edges emanating from
the same vertex may become as large as (rather than
as before). In order to estimate the quantitative effect of such
noise on the performance of ourANT-WALK -1 algorithm, we
rework our previous results to account the possible deviation.

Lemma 2. : If and are both neighbors of , and
the sensor deviation is at most, then, at all times during
execution ofANT-WALK

(4)

This modification is due to the fact that an edge may be
traversed up to times before the noisy sensor can see that
this edge is favored over the others emanating from.

Consequently, Lemma 4 becomes.
Lemma 4. : With sensor deviation at most, it always

holds that for all

and
Theorem 1 :

where is a bound on the deviation of the sensors.
Observe that as the noise parametergrows, there is more

sense in using a larger number of robots. Interestingly enough,
this observation is similar to the experimental results presented
in [19] (in a rather different context), where a crypt-arithmetic
puzzle is being solved by several cooperating agents that can
exchange hints over a common blackboard. There, it was
observed (empirically) that a group of solvers may demonstrate
a better cooperation under noisy conditions.

IV. ANT-WALK -2: COVERING WITH BACKTRACKING—DFS
EXTENDED TO MULTILEVEL SEARCH

As we saw in the previous section, there are cases where
ANT-WALK -1 gets into a series of “traps” that cause useless
re-visiting of the same locations. In this section we suggest
another algorithm that, in general, works more efficiently, but
requires some more complicated hardware. This algorithm is
essentially a generalization of the famous depth-first-search
algorithm. First, let us formulate the common DFS (as in [51],
[31], [25]). The basic idea in depth-first-search is to try and
continue the search to a neighbor that has not yet been visited;
if none exists, the search “back-tracks” along the edge used in
the first entrance to the current vertex. If no such edge exists

WAGNER et al.: DISTRIBUTED COVERING BY ANT-ROBOTS USING EVAPORATING TRACES 925

(i.e., the current vertex was the first in the search), the search
terminates and reports that all edges ofhave been visited.
To formalize it in our trace-oriented terms, we will need the
following two definitions, that make use of the traces on the
edges: for each vertex, let be the time of the first
entry to , i.e.,

and let be the time of the first exit from , i.e.,

Recall that in theDFS algorithm an edge is never visited
twice in the same direction (Lemma 3.1 in [25]), hence the
and values, once set, will never change. We assume that
initially all and values are set to. Two observations
can be made.

1) If both and are then is a “new” vertex,
i.e., it has never been visited.

2) If (i.e., it was left before it was
entered) then was an initial vertex of the tour.

The common DFS can now be formulated as
Rule DFS(u vertex;)
A) ;
B) if s.t.

then
set ;
if go to ;

/* am I back in the origin? */
C) if then STOP.

(the graph is covered).
/* backtracking - all neighbors are old */

D) find an edge such that ;
E) set ;
F) go to .
endDFS.
Note that in order to perform a proper backtracking, one

mustbe able to mark the entry edge for each vertex. But if, for
some reason, this mark is lost, or the graph is changed, then
the desperate searcher is hopeless and will never cover the
graph. Hence, the DFS is not suitable for a noisy environment
where marks and traces are prone to frequent change or
misinterpretation. Another problem in using DFS for multi-
robot covering task is how to apply it for several cooperating
robots. The reason is that once a robot got back to its starting
point, it will (according to DFS) stop there forever, rather then
go around and help his hard-working fellows.

In order to overcome the above disadvantages amultilevel
DFS approach is suggested. In this method, when an agent
is facing a situation in which the search cannot continue (i.e.
no backward edge emanates from the current vertex), then a
new level of search is started by increasing the value of the
search-level variable, which is individual for robot. This
variable stores the time when “the new history begins,” i.e.,
any edge/vertex visited before that time is now considered un-
visited by robot , as opposed to the common DFS where all
visited vertices are considered “visited” in exactly the same

way. Hence, if search-level for a robot , then
the vertex is considered “new” by this robot. Initially, all
search-level variables are set to 0, and the rule of motion for
each agent is

/* multilevel DFS */
/* initially all search-level’s are set to 1, */
/* and all ’s to 0. */
Rule ANT-WALK-2(search-level(r) integer,u vertex;)
A) ;
B) if s.t. search-level

then
set ;
if search-level go to ;

/* have I exhausted the current level of search? */
C) if search-level then

setsearch-level ;
/* backtracking - all neighbors are old */

D) find an edge such that ;
E) set ;
F) go to .
endANT-WALK-2.
Note that Step is taken if has a neighbor not visited in

the current search level, Stepis a backtracking step, and (in
Step) the search-levelof agent is increased if the current
level of DFS cannot be continued and a new level of search
has to be established. This may happen in one of three cases.

1) The robot got back to the point where the current level
of search has started. It should now start a new search
by setting a new value ofsearch-level, (rather than take
a nap) in order to help other agents.

2) A change has occurred in the graph (e.g., an obstacle
has been moved, which, in our model, means that an
edge/vertex has been added or deleted) that makes it
impossible to backtrack as usual.

3) The noise in the sensors makes the robot believe that
option 1 above is true.

Note that in this second algorithm each robot needs to remem-
ber its search-level, and to make more calculations in each
vertex it visits. However, the reward is a better performance
as will now be shown.

A. Analysis ofANT-WALK-2

First assume that (one agent) and there is no change
in the graph. ThenANT-WALK -2 is just another variation on
Depth-First Search, that covers the graph in time at most
(as proved in Lemma 3.1 of [25]), then starts a new tour and
so on.

For more than one agent, the work may or may not be
distributed between the agents. In the worst case, they will
just repeat each other’s steps and create (at most)levels
of search before full covering is achieved. In this case there
will be no speed-up. (an example of such a miserable case
is when all robots are initially placed near one end of a long
and narrow corridor). But even if in general the work is not
necessarily evenly-distributed between the agents, the increase
in number of agents may be useful to reduce the effect of noise.
Assume, as before, that the sensors are prone to an error of up

926 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 15, NO. 5, OCTOBER 1999

to units, as defined in Section III-B. Then in the worst case,
levels of search are needed to guarantee a full coverage of

the graph. Formally,
Theorem 2: agents obeyingANT-WALK -2 and having sen-

sory noise level of at most units will cover a graph in
time where

See Figs. 6 and 7 for the evolution ofANT-WALK -2 with
varying amount of noise, and Figs. 8–11 for a plot of the cover
time versus level of noise, for various noise levels and numbers
of robots. Fig. 12 shows how a group of agents obeying the
ANT-WALK -2 rule can overcome a change in the topology of
the region to be covered.

V. SIMULATIONS AND EXPERIMENTS

In our view, the main goal of this paper in developing the
necessary theory for proving upper bounds on the covering
times of our algorithms. However, experiments are useful for
getting an idea on the practically more interesting, average
behavior of the group of robots. Hence, theANT-WALK ’
algorithms were implemented in theprogramming language
on an IBM-Power2 workstation under the AIX operating
system. The algorithms were tried on several shapes and agent-
numbers, with a subset of the integer lattice as the underlying
graph. The numerical results of cover time are presented in
Figs. 4–15. An important property of our algorithms is their
ability to overcome noisy conditions, so we simulated each
rule on three levels of noise, namely 0, 10, and 20 units. Due
to the random nature of the noise, it is also important to run the
algorithm several times and find the average time of covering.
A comparison between one-shot covering times (Figs. 8 and
9) and average covering time (Figs. 10 and 11) shows that, on
the average, more robots yield faster covering periods.

In Fig. 8, we show the time of covering versus the num-
ber of agents, with varying amount of noise for the three
algorithms. Noise is simulated in the following way: when
a noise-level of is assumed, and the actual smell is,
the sensor reading is interpreted as , where is
a random number between and 1. The plots in Figs. 9
and 11 show the same information but ordered by noise-
level; it shows thatANT-WALK -1 and -2 are far better than
VERTEX-ANT-WALK in noisy environment, while the latter is
better when no noise is present. The asymptotic behavior (as

grows), however, seems to be similar for all three algorithms.
A possible explanation is that cover time in all the algorithms
depend on , and this term dominates whengrows (see
Tables I and II).

Specific examples are shown in Figs. 4–7. In these figures,
the gray level in a tile represents the trace intensity i.e. the time
since last visit to this point. Fig. 12 shows an example with a
blocking obstacle that is removed during execution. It can be
seen that the agents detect the change in topology by doing
a multilevel DFS, following theANT-WALK -2 rule. The other
algorithms will have no problems with this situation as well.

In Figs. 13–15, we show examples of theVERTEX-ANT-
WALK dynamics with the cycle-cover that emerges as a fixed

Fig. 4. Simulated evolution of three agents, oriented by the ANT-WALK-1
rule. The gray-level is proportional to the number of visits in each tile. Note
that most (�90%) of the area is cleaned within 80% of the time.

Fig. 5. Three agents, oriented by the ANT-WALK-1 rule, with random
sensory-noise of ten units. This noise does not avoid the agents from fulfilling
their mission; however a significant delay is introduced.

WAGNER et al.: DISTRIBUTED COVERING BY ANT-ROBOTS USING EVAPORATING TRACES 927

Fig. 6. Three agents, oriented by the ANT-WALK-2 rule, which is a gener-
alization of the DFS algorithm. Covering here is much more efficient (27%
of the time required by ANT-WALK-1 rule) due to its backtracking ability.

point of the process. Note that the process does not necessarily
converge to a cycle-cover even if one exists in the graph.

In order to investigate theVERTEX-ANT-WALK process, a
simulator [53] was written in JAVA which enables a user
to specify various parameters of the environment, includ-
ing drawing the obstacles and applying moving obstacles
(“junkies”).

We are now in the process of building an experimental
robotic vehicle that is able of laying traces and using them for
navigation. This will serve to test our model and algorithms
in a “real-life” situation.

VI. DISCUSSION

We addressed the problem of exploring an unknown area,
with simple a(ge)nts that can leave and sense traces on
the ground, and this is their only way of communication.
We have shown that even such simple imitations of ants
can cooperate efficiently in their mission of exploration. We
proved that a group of such ants, obeying either theANT-
WALK -1 or ANT-WALK -2 rule, covers a graph in polynomially-
bounded time. For a third algorithm,VERTEX-ANT-WALK, we
showed an exponential upper bound and presented a fascinat-
ing property of its limit behavior, namely that cycle-covers
of the graph are among the limit cycles of this process.
Another application to the trace-oriented cover methods is the
maintenance of spanning tree that can recover from changes
in the graph.

An advantage of our algorithms over existing search meth-
ods is in their adaptivity to changes in the environment and

Fig. 7. Three agents, oriented by the ANT-WALK-2 rule, with sensory-noise
level of ten units. Note that even with noise, this algorithm is much faster
than ANT-WALK-1; it is also advantageous over the ordinary DFS which is
extremely vulnerable to sensing errors.

Fig. 8. Time of coveringtk versusk—the number of robots, with varying
amount of sensing-noise, for the three ANT-WALK algorithms. Note the
different scales on the vertical axis. It can be seen that ANT-WALK-2 has
best performance in the given test case.

to noise in the reading of the sensors. This property comes
from our usage ofrelative rather than absolute value of traces.
Also, in using only internal memory for navigation there are
some disadvantages, e.g.:

1) one needs a precise sense of location, which can only be
achieved via expensive odometric or GPS techniques;

2) the size of memory depends on the complexity of the
area to be covered.

On the other hand, an advantage of our “memoryless” (ac-
tually, shared external memory) approach is the ease of

928 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 15, NO. 5, OCTOBER 1999

Fig. 9. The same data of the previous figure is here sorted by noise-level.
It clearly shows the VERTEX-ANT-WALK is best in the absence of noise,
while ANT-WALK-2 wins in noisy conditions.

Fig. 10. Time of coveringtk versusk—the number of robots, with varying
amount of sensing-noise, for the three ANT-WALK algorithms, averaging on
10 coverings.

Fig. 11. Same data (average of 10 covers) of the previous figure, sorted by
noise-level. Here again ANT-WALK-2 wins with noisy sensors.

cooperation when the traces are accessible to all. Hence we
feel that such a model is worth thinking about, at least as a
paradigm. In actual implementation it may be found useful to
combine such a trace mechanism with other, memory-backed
algorithms to improve the performance and reliability of the
system.

Although we assumed that the explored area is divided
into equally-shaped tiles in the form of a grid, this is not

Fig. 12. Ten ants overcoming a change in the environment, by doing a
multilevel DFS (ANT-WALK-2). It demonstrates the ability of the algorithm
to cope with a dynamic environment.

at all necessary; actually our algorithms and proofs apply to
any set of local missions that are geometrically connected by
neighborhood relations. We can associaterooms (rather than
tiles) with the vertices in the graph, and instruct the robot to
clean the full room before leaving it. If we define a room to
be, say, an square array of tiles, then the effort at every
vertex is multiplied by , but the number of vertices is now

times smaller. Recall that the worst case complexity of
the first algorithm depends on the square of the number of
vertices; this makes the total complexity much smaller. Please
note, however, that a mapping from our model to the physical
robotic world is not necessarily a direct one. For example,
the possibility of a co-presence of more than one robot at
one site can be justified if the vertices represent rooms and
the edges—corridors. In some other cases, a more elaborated
model may be needed.

It is of interest to note that the expected cover-time of
random-walkers on a general graph with edges and

vertices is known to be bounded from above by ,
if the walkers are initially located in a certain way (see [12],
[14] for details). Applying it to our planar case, and using the
fact that in a planar graph , we get an upper bound
of . This seems to be comparable to in our
ANT-WALK -1 and in ANT-WALK -2, however both our
algorithms are advantageous over the random one in that their
upper bounds do not depend on the initial locations and that
their cover time is guaranteed rather than expected.

WAGNER et al.: DISTRIBUTED COVERING BY ANT-ROBOTS USING EVAPORATING TRACES 929

Fig. 13. VERTEX-ANT-WALK dynamics has the interesting property that
cycle covers of the graph are among the limit cycles. Here a Hamiltonian
path (i.e., a special case of cycle-cover) was found as a limit cycle of the
process. The black lines describe the edges traversed by the ant in the most
recentn units of time.

Our model was inspired by ants behavior, but can be used
to design practical multi-agent robotic systems. Some of the
potential applications of the smell-oriented navigation model
are in cooperative cleaning of a dirty region with obstacles,
and in the maintenance of spanning tree in a communication
network (see Appendix III).

There are several other issues that may be of interest for a
practical implementation of covering algorithms, and should
be further investigated by both analysis and simulations.

1) Continuous Trace-Oriented Walk: Our analysis re-
ferred to discrete tiles on a grid. A challenging question
is whether a continuous version of one (or more) of our
algorithms will work in a continuous setting, and how
fast can it be. Our simulations on such a setting show
very good convergence times, but a rigorous quantitative
analysis will probably give the necessary insight into the
dynamics.

2) Rate of Covering: The amount of covering per unit
of time is not at all constant during execution, as can
be seen in Fig. 4, where more than 50% of the area is
covered within 20% of the total covering time. In some
applications (e.g. surveillance) it may be better to choose
a “quick and dirty” algorithm that covers a significant
part of the area in a short time, rather than one with a
shorter time of total covering.

Fig. 14. Here again a cycle-cover is found as a limit cycle of the VER-
TEX-ANT-WALK process; this time we get, in the limit, two cycles covering
the graph of tiles.

3) Explicit Cooperation and Load Balancing: Do all
robots invest about the same effort? We would clearly
like to have as fair work distribution as possible. A more
explicit method of cooperation (e.g. two agents share
experience upon meeting in a vertex) may prove to be
useful in this aspect. This, however, will require each
robot to carry its own memory. Also, we could clearly
see in simulations that the initial distribution of locations
has a significant effect on balancing the load; if robots
are fairly distributed, or are separated by walls, they do
better in terms of cover-time.

4) Dependency on the Shape:As shown in our analysis,
the upper bound on covering time depends not only on
the area of the region but also on its shape, as represented
by the cut-resistance parameter (see Theorem 1).
Calculating analytically is possible only for simple
cases; however our simulations show that as the shape
becomes more complicated (and hencegrows) it
takes a longer time to cover. But this point needs
a more detailed quantitative investigation; i.e. taking
several shapes (with the same area) and comparing their
covering time and -values.

5) Reconfiguration Time: If the environment changes
during the process, but the frequency of changes is
smaller than cover-time, then the robots can clearly
handle the problem. However if faster changes are
allowed, a complete cover may be impossible. See the
on-line JAVA simulator [53] for a demonstration.

930 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 15, NO. 5, OCTOBER 1999

Fig. 15. Same region as in the previous two figures, but this time with four
ants; a triple cycle-cover ofG is achieved in the limit. An open question is
whether or not the time of convergence to such a limit-cycle can be reasonably
bounded.

The model we described in this paper is fairly simple
but seems to yield interesting results and to pose intriguing
challenges for both theoreticians and implementers of robotic
systems.

APPENDIX I

A. Proofs

Proof of Lemma 1:According to the algorithm, a robot
located at should choose an outgoing edge with
smallestvalue of . Then, in course of traversing the
selected edge, the robot sets the label to the current
clock value (step C), and, by doing so, makes to be
the largestamong ’s neighbors. So the edge now has
the lowest priority. In other words, one may define a queue
between the edges emanating from. This queue is prioritized
by the value of on each edge, and every timeis visited,
the edge on the head of the queue is selected and then this edge
is moved back to the tail of the queue. Hence, the edges going
out of are visited in some cyclic order, and this order, once
set, is never changed. We conclude that once has been
visited, it will be visited again after exactly other visits to

. This implies that is periodic with period .
Proof of Lemma 3:For each agent , let us denote by

the number of times it traversed the edge in this
direction. Considering a cut , it clearly holds that the
number of times an agent has crossed the cut in one direction
cannot differ by more than 1 from the number of crossings,

by the same agent, in the opposite direction

Summing over all the agents, we get the Lemma.
Proof of Lemma 4:If then our Lemma is

clearly true. Otherwise, and for each edge
in (i.e.) we have that

. The same is true
for all the edges in this cut; hence the net flow across the cut

is lower-bounded as follows:

But this net flow is also bounded above by(Lemma 3), so
we get that

and hence

which yields the lemma.
Proof of Theorem 1:Once started, our agents never rest;

they traverse an edge in every clock cycle. Even when two (or
more) agents occupy the same tile, they can both use the next
cycle because we assume that they have different clock-phases.
Hence, after units of time, the total flow in the graph is

(Recall that , the flow along an edge , is defined
as the number of passages so far along the edge in the-to-
direction). Assume, in contradiction, that the timespecified
by the theorem has passed, yet there is an edge such
that . Corollary 4 implies that no edge has a flow
larger than . Hence, the total amount of flow in
can be bounded from above

total flow in

(using). Dividing by we get that the time
passed cannot exceed , in contradiction
with the assumed time.

Proof of Theorem 2:If 0 thenANT-WALK -2 cannot be
worse than the common DFS which is known to cover the
graph in time bounded above by 2. If there is
noise, i.e., 0, then, in the worst case, an edge may need to
be traversed up to 1 times per search-level before the robot

WAGNER et al.: DISTRIBUTED COVERING BY ANT-ROBOTS USING EVAPORATING TRACES 931

TABLE I
COVERING TIMES FOR THE THREE ALGORITHMS RUNNING ON A 14� 14 MAZE-SHAPE WITH A VARYING AMOUNT OF NOISE. NOTE THAT THE TIME

IS NOT ALWAYS MONOTONICALLY DECREASING; IN SOME CASES ADDITIONAL ROBOTS DISTURB THE EFFICIENCY OF THE WHOLE GROUP

TABLE II
COVERING TIMES FOR THE THREE ALGORITHMS RUNNING ON A 14� 14 MAZE-SHAPE WITH A VARYING AMOUNT OF NOISE, AVERAGED ON TEN COVERINGS; THE

TABLE SHOWS THAT ON THE AVERAGE, MORE ROBOTS BRING A FASTER COVERING, WITH SOME EXCEPTIONS CAUSED BY THE RANDOM NATURE OF THE NOISE

can “see” that this edge has indeed been visited. Therefore no
edge is traversed more than times before all its neighbors
are traversed once. On the other hand,robots traverse times
more edges than one does, hence their cover timecannot
exceed times —the cover time of one noiseless robot.

APPENDIX II

A. VERTEX-ANT-WALK—A Vertex-Oriented Search

In certain scenario there is no need to cover allpassages
between the tiles and the previous algorithms, which aim
to cover all edges require too much. Therefore, one can
suggest another algorithm which makes its choice between all
accessibletiles and uses a trace left on thetile itself as a basis
for its decision. The followingVERTEX-ANT-WALK algorithm
uses this principle. The trace left in the vertex ,
is, again, the time of the visit. The local decision rule for
the ant being in location is to go to the neighbor with the
least -value. Formally as

Rule VERTEX-ANT-WALK(u vertex;)
A) ;
B) find a vertex in such that

;
(if there is more than one such neighbor -

make some heuristic decision)
/* now drop some trace on */

C) set ;
D) go to ;
endVERTEX-ANT-WALK.

The theorem provides a worst case bound which is expo-
nential in the graph diameter. We believe that this bound is
very far from tight. The simulations we conducted show that
this algorithm performance is close to those associated with
the edge based algorithms, although it is sometimes inferior,
especially when sensor inaccuracy is high.

A system of agents obeying this rule is guaranteed to cover
the vertices, and works quite well in simulations. Its covering
time is upper bounded in the following theorem.

Theorem 3: Following theVERTEX-ANT-WALK rule, a group
of agents will cover the vertex set of a graphwithin time

, such that

where is the number of vertices, is the maximum degree
and is the diameter of .

Proof: If is an edge in then should be visited
at least once every visits to , since after each visit to
one of its neighbors is visited and hence aftervisits to , if

has not been visited so far, all’s neighbors have-value
grater than , hence should be visited no later than after
the next visit to . Hence we get

(5)

where denotes the number of visits to nodeso far.
Let us assume that some vertex, say, has not yet been

visited, hence 0. Now consider the farthest vertex
from , say , and a shortest path between them

. Clearly , the length of the path, is smaller

932 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 15, NO. 5, OCTOBER 1999

than or equal to , the diameter of . Using (5) we get

(6)

But since 0 we have , and the total amount
of visits in is hence bounded above by .

Assuming that agents are active on the graph, afterunits
of time there have been a total of visits to vertices in the
graph, hence

We assume that initially all agents are located on distinct
vertices, hence when goes to 0 as the cover is
immediate.

The above is only a worst-case upper bound; Actually,
simulations show a much better behavior. This gives rise to the
hope that a tighter upper bound will eventually be discovered.

The dynamics involved with thisVERTEX-ORIENT ANT-WALK

has the interesting property of having cycle covers of the graph
among its fixed points, i.e. once theagents are in a loop of
one (or more, up to) cycle(s), they continue hoping on these
cycles forever. In the case of a single agent, such a cycle is
a Hamiltonian cycle; see Fig. 13. For a , its a 2-factor
(or “cycle cover”) of the graph. See Figs. 14 and 15 for some
examples. Hence, such a dynamic may serve as a heuristic for
finding a Hamiltonian path.

In another work [57], we have shown that a more sophis-
ticated approach to the vertex process achieves a cover time
of where is the number of vertices and—the diameter
of the graph.

APPENDIX III

A. Using theANT-WALK Covering Method to Maintain a
Self-Stabilizing Spanning Tree in a Dynamic Network

The system of ants and smell-traces is adaptive and will
change to comply with changes in the environment, as demon-
strated in Fig. 12. A common notion of adaptivity in dis-
tributed algorithms is self-stability. A distributed algorithm is
self-stabilizing(as defined in [20]) if it can be started fromany
possibleglobal state and once started, the algorithm regains
consistency by itself. The study of such algorithms started
with [22]. In [20], A self-stabilizing algorithm is described
that maintains a DFS tree in a network of processors, and
guarantees recovery from a topological change in the graph
within time .

Our system of cleaning agents is self-stabilizing since it
will recover from any change in the smell levels on the edges,
(e.g. if a wind-blow has scrambled the smell-traces) or even
a change in the topology of the graph, as long as the graph
remains connected. This property does not exist in traditional
search algorithms like Depth-First-Search and Breadth-First-
Search (see, e.g. [25]), since those methods rely on the absolute
marking of the edges, while our method only uses the marks
as relative quantities.

Now let us assume that a network is given in which nodes
and edges occasionally become ineffective, and we need to
keep a distributed tree that spans the network, i.e.—each
(effective) nonroot node should know who his “father” node
is in the tree. If our agents have distinct’s, say ,
then they can leave a signature at each vertex in the form of a
pair , where is the last time an agent visited the vertex,
and is his unique identification number. Clearly, after our
agents have covered the graph, no two vertices will have the
same signature. Hence a spanning tree can be established by
having each node taking his greatest neighbor as a father; here
“greatest” means under the lexicographic order of the pairs

among the neighbors. If a node or an edge is crashing,
we are guaranteed (by Theorem 1, 2, or 3) that after no more
than (the respective) units of time the tree will recover.

The advantage of the above algorithm over existing methods
for keeping cycle-free communication graphs [20], [38] is that
in our method only of the processors need to work at a
time—the others can proceed in their regular jobs.

REFERENCES

[1] F. R. Adler and D. M. Gordon, “Information collection and spread by
networks of patrolling ants,”Amer. Naturalist, vol. 140, no. 3, Sept.
1992.

[2] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovasz, and C. Rakoff,
“Random walks, universal traversal sequences, and the complexity of
maze problems,” inProc. 20th Annu. Symp. Foundations Comput. Sci.,
San Juan, Puerto Rico, Oct. 1979, pp. 218–223.

[3] W. Alt, “Biased random walk models for chemotaxis and related
diffusion approximations,”J. Math. Biol., vol. 9, pp. 147–177, 1980.

[4] G. Giralt and C. Weisbin, Eds.,Auton. Robots Planet. Explorat., Auton.
Robots, vol. 2, pp. 259–362, 1995.

[5] J. Borenstein, H. R. Everett, and L. Feng,Navigating Mobile
Robots—Systems and Techniques. Wellesley, MA: A. K. Peters, 1996.

[6] C. M. Bender and S. A. Orszag,Advanced Mathematical Methods for
Scientists and Engineers. New York: McGraw-Hill, 1978.

[7] G. Beni and J. Wang, “Theoretical problems for the realization of
distributed robotic systems,” inProc. 1991 IEEE Int. Conf. Robot.
Automat., Sacramento, CA, Apr. 1991, pp. 1914–1920.

[8] B. Bollobas, Graph Theory—An Introductory Course. New York:
Springer-Verlag, 1990.

[9] V. Braitenberg,Vehicles. Cambridge, MA: MIT Press, 1984.
[10] T. Balch and R. C. Arkin, “Communication in reactive multiagent

robotic systems,”Auton. Robots, vol. 1, pp. 27–52, 1994.
[11] M. Blum and W. J. Sakoda, “On the capability of finite automata in 2

and 3 dimensional space,” inProc. FOCS’77, 1977, pp. 147–161.
[12] G. Barnes and U. Feige, “Short random walks on graphs,” inProc. 25th

ACM STOC, 1993.
[13] M. Blum and D. Kozen, “On the power of the compass, or, why mazes

are easier to search than graphs,” inProc. FOCS’78, 1978, pp. 132–142.
[14] A. Z. Broder, A. R. Karlin, P. Raghavan, and E. Upfal, “Trading space

for time in undirecteds � t connectivity,” SIAM J. Comput., vol. 23,
no. 2, pp. 324–334, Apr. 1994.

[15] P. Bonasso and K. Mayers, “The home-vacuum event,”AI Mag., vol.
19, no. 3, Fall 1998.

[16] R. A. Brooks, “Artificial life and real robots,” inProceedings of the
First European Conference on Artificial Life. Cambridge, MA: MIT
Press/Bradford Books, 1992, pp. 3–10.

[17] A. M. Bruckstein, “Why the ant trails look so straight and nice,”Math.
Intell., vol. 15, no. 2, pp. 59–62, 1993.

[18] A. M. Bruckstein, C. L. Mallows, and I. A. Wagner, “Probabilistic
pursuits on the integer grid,”Amer. Math. Monthly, vol. 104, no. 4,
Apr. 1997.

[19] S. H. Clearwater, T. Hogg, and B. H. Huberman, “Cooperative solution
of constraint satisfaction problems,” inComputation: The Micro and the
Macro View, B. A. Huberman, Ed. Singapore: World Scientific, 1992,
pp. 33–70.

[20] Z. Collin and S. Dolev, “Self-stabilizing depth-first search,”Inform.
Process. Lett., vol. 49, pp. 297–301, 1994.

[21] J. L. Deneubourg, S. Aron, S. Goss, J. M. Pasteels, and G. Duerink,
“Random behavior, amplification processes and number of participants:

WAGNER et al.: DISTRIBUTED COVERING BY ANT-ROBOTS USING EVAPORATING TRACES 933

How they contribute to the foraging properties of ants,”Physica, vol.
22D, pp. 176–186, 1986.

[22] E. W. Dijkstra, “Self-stabilizing systems in spite of distributed control,”
Commun. ACM, vol. 17, pp. 643–644, 1974.

[23] X. Deng and A. Mirzaian, “Competitive robot mapping with homoge-
neous markers,”IEEE Trans. Robot. Automat., vol. 12, pp. 532–542,
Aug. 1996.

[24] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, “Robotic exploration as
graph construction,”IEEE Trans. Robot. Automat., vol. 7, pp. 859–864,
Dec. 1991.

[25] S. Even,Graph Algorithms. Rockville, MD: Comput. Sci. Press, 1979.
[26] A. S. Fraenkel, “Economic traversal of labyrinths,”Math. Mag., vol. 43,

pp. 125–130, 1970; correction vol. 44, p. 12, 1971.
[27] S. Gal and E. J. Anderson, “Search in a maze,”Probab. Eng. Inform.

Sci., vol. 4, pp. 311–318, 1990.
[28] C. Hofner and G. Schmidt, “Path planning and guidance techniques for

an autonomous mobile cleaning robot,”Robot. Auton. Syst., vol. 14, pp.
199–212, 1995.

[29] B. K. Holldobler and E. O. Wilson, “Weaver ants,”Sci. Amer., vol. 237,
no. 6, pp. 146–154, 1977.

[30] J. Huxley,Ants. London, U.K.: Arrow Books, 1962.
[31] J. Hopcroft and R. Tarjan, “Efficient algorithms for graph manipulation,”

Commun. ACM, pp. 372–378, June 1973.
[32] S. Hert, S. Tiwari, and V. Lumelsky, “A terrain covering algorithm for

an AUV,” Auton. Robots, vol. 3, nos. 2–3, pp. 91–119, June–July 1996.
[33] S. Hedberg, “Robots cleaning up hazardous waste,”AI Expert. New

York: Springer-Verlag, May 1995, pp. 20–24, 1994.
[34] A. Itai, C. H. Papadimitriou, and J. L. Szwarefiter, “Hamilton paths in

grid graphs,”SIAM J. Comput., vol. 11, pp. 676–686, 1982.
[35] Instantiating Real-World Agents: Papers from the AAAI 1993 Fall Sym-

posium, Technical Report FS-93-03. Menlo Park, CA: AAAI Press,
1993.

[36] M. Kac, “Some mathematical models in science,”Science, vol. 166, pp.
695–699, 1969.

[37] B. Kuipers and Y. T. Byun, “A robot exploration and mapping strategy
based on a semantic hierarchy of spatial representations,”Robot. Auton.
Syst., vol. 8, pp. 47–63, 1981.

[38] S. Katz and O. Shmueli, “Cooperative distributed algorithms for dy-
namic cycle prevention,”IEEE Tran. Softw. Eng., vol. SE-13, pp.
540–552, May 1987.

[39] S. Lefschetz,Differential Equations: Geometric Theory. New York:
Interscience, 1957.

[40] E. M. Rauch, M. M. Millonas, and D. R. Chialvo, “Pattern formation
and functionality in swarm models,”Phys. Lett. A, 1995.

[41] J. D. Nicoud and M. K. Habib, “The Pemex B autonomous demining
robot: Perception and navigation strategies,” inProc. 1995 IEEE/RSJ Int.
Conf. Intell. Robots Syst., Human-Robot Interaction Cooperative Robots,
Pittsburgh, PA, Aug. 1995, vol. 1, pp. 419–424.

[42] L. E. Parker, “On the design of behavior-based multi-robot teams,”Adv.
Robot., vol. 10, no. 6, pp. 547–578, 1996.

[43] R. A. Russell, “Mobile robot guidance using a short-lived heat trail,”
Robotica, vol. 11, pp. 427–431, 1993.

[44] , “Laying and sensing odor markings as a strategy for assisting
mobile robots navigation tasks,”IEEE Robot. Automat. Mag., vol. 2,
pp. 3–9, Sep. 1995.

[45] , “Heat trails as short-lived navigational markers for mobile
robots,” in Proc. 1997 IEEE Int. Conf. Robot. Automat., 1997, pp.
3534–3539.

[46] M. Schneider-Fontán and M. J. Matríc, “Territorial multi-robot task
division,” IEEE Trans. Robot. Automat., vol. 15, pp. 815–822, Oct. 1998.

[47] Y. Shoham and M. Tennenholtz, “On social laws for artificial agent
societies: Off line design,” inAI J., 1995.

[48] H. A. Simon,The Sciences of the Artificial, 2nd ed. Cambridge, MA:
MIT Press, 1981.

[49] S. Sen, M. Sekaran, and J. Hale, “Learning to coordinate without sharing
information,” in Proc. AAAI-94, 1994, pp. 426–431.

[50] L. Steels, “Cooperation between distributed agents through self-
organization,”Decentralized A.I.—Proceedings of the Firstst European
Workshop on Modeling Autonomous Agents in Multi-Agent World, Y.
DeMazeau and J. P. Muller, Eds. Amsterdam, The Netherlands:
Elsevier, 1990, pp. 175–196.

[51] R. Tarjan, “Depth-first search and linear graph algorithms,”SIAM J.
Comput., vol. 1, no. 2, pp. 146–160, 1972.

[52] G. Tarry, “Le problem des labyrinths,”Nouvelles Annales de Mathema-
tiques, vol. 14, p. 187, 1895.

[53] “A Vertex-Ant-Walk simulator,” web-accessible through:
http://www.cs.technion.ac.il/˜wagner/pub/vaw.html.

[54] I. A. Wagner and A. M. Bruckstein, “Cooperative cleaners—A study
in ant-robotics,” inCommunications, Computation, Control, and Signal
Processing: A Tribute to Thomas Kailath, A. Paulraj, V. Roychowdhury,
and C. D. Schaper, Eds. Amsterdam: The Netherlands, Kluwer, 1997,
pp. 289–308. Preliminary version appeared1st Online Workshop on
Evolutionary Computation, Nagoya university and the WWW, Oct.
1995, http://www.bioele.nuee.nagoya-u.ac.jp/wec/.

[55] I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein, “Smell as a
computational resource—A lesson we can learn from the ant,” inProc.
4th Israeli Symp. Theory Comput. Syst., Jerusalem, Israel, June 10–12,
1996; also in Tech. Rep. CIS-9610, Ctr. Intell. Syst., Technion, Haifa,
Israel, Apr. 1996.

[56] , “On-line graph searching by a smell-oriented vertex process,”
in Proc. AAAI’97 Workshop On-Line Search, Providence, RI, July 28,
1997, pp. 122–125.

[57] , “Efficiently searching a graph by a smell-oriented vertex
process,” inAnnals of Mathematics and AI. The Netherlands: Baltzer
Science Publishers, 1998, pp. 211–223.

[58] H. Yaguchi, “Robot introduction to cleaning work in the East Japan
Railway Co.,” Adv. Robot., vol. 10, no. 4, pp. 403–414, 1996.

Israel A. Wagner was born in Israel in 1960. He
received the B.Sc. degree (cum laude) in computer
engineering from the Technion—Israel Institute of
Technology, Haifa, in 1987, the M.Sc. degree (cum
laude) in computer science from the Hebrew Uni-
versity, Jerusalem, Israel, in 1990, and the Ph.D.
degree in computer science from the Technion in
1999.

He was a Research Engineer in General Mi-
crowave, Jerusalem, from 1987 until 1990, when
he joined the IBM Haifa Research Laboratory as a

Staff Member. He is an Adjunct Lecturer in the Computer Science Department,
the Technion. His research interests include multiagent robotics, manual and
automatic VLSI design, computational geometry, and graph theory.

Dr. Wagner is a member of MAA and AMS.

Michael Lindenbaum was born in Israel in 1956.
He received the B.Sc., M.Sc., and D.Sc. degrees
from the Department of Electrical Engineering, the
Technion—Israel Institute of Technology, Haifa, in
1978, 1987, and 1990 respectively.

From 1978 to 1985, he served in the IDF. He did
his Post-Doctoral work at the NTT Basic Research
Labs, Tokyo, Japan, and since October 1991, he has
been with the Department of Computer science, the
Technion. His main research interest is computer
vision, and especially statistical analysis of object

recognition and grouping processes.

Alfred M. Bruckstein was born in Transylvania,
Romania, on January 24, 1954. He received the
B.Sc. and M.Sc. degrees in electrical engineering,
from the Technion—Israel Institute of Technology,
Haifa, in 1977 and 1980, respectively, and the
Ph.D. degree in electrical engineering from Stanford
University, Stanford, CA, in 1984.

Since October 1984, he has taught at the Tech-
nion, where he presently holds the Ollendorff Pro-
fessorship of Sciences in the Computer Science
Department. He is a frequent visitor at Bell Labora-

tories, Lucent Technologies, Murray Hill, NJ. His research interests are image
analysis and processing, pattern recognition, robotics and ants, and computer
graphics. He has also done work in estimation theory, signal processing,
algorithmic aspects of inverse scattering, point processes, and mathematical
models in neurophysiology.

Dr. Bruckstein is a member of SIAM, MAA, and AMS.

