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Abstract—Nonnegative matrix factorization (NMF) approximates a given data matrix as a product of two low-rank nonnegative
matrices, usually by minimizing the L2 or the KL distance between the data matrix and the matrix product. This factorization was
shown to be useful for several important computer vision applications. We propose here two new NMF algorithms that minimize
the Earth mover’s distance (EMD) error between the data and the matrix product. The algorithms (EMD NMF and bilateral EMD
NMF) are iterative and based on linear programming methods. We prove their convergence, discuss their numerical difficulties,
and propose efficient approximations. Naturally, the matrices obtained with EMD NMF are different from those obtained with
L2-NMF. We discuss these differences in the context of two challenging computer vision tasks, texture classification and face
recognition, perform actual NMF based image segmentation for the first time, and demonstrate the advantages of the new
methods with common benchmarks.

Index Terms—nonnegative matrix factorization, Earth mover’s distance, image segmentation
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1 INTRODUCTION

In computer vision we often need to learn characteri-
zations of visual classes from examples. Examples rep-
resenting class combinations are usually much easier
to obtain than examples of a single class. Nonneg-
ative matrix factorization (NMF) is a natural choice
for learning the characterizations from such mixtures
when the class characterization mixtures correspond
to weighted sums of single class characterizations.
Histograms and averaged feature vectors are some
examples.

NMF is a representation of a nonnegative matrix
as a product of two nonnegative matrices. The fac-
torization becomes useful and interesting when the
multiplied matrices are of low rank, implying usually
that the factorization is approximate. In this case, the
decomposition is useful for signal representation as
an additive combination of a small number of atomic
signals (part-based representation).

The factorization and the first algorithm for finding
it were introduced by Paatero and Tapper [41]. An ef-
ficient multiplicative update algorithm was proposed
by Lee and Seung [29], [30]. Different aspects of this
latter algorithm were analyzed and many improve-
ments were proposed [6], [17], [24], [23], [16], [60].
The NMF technique has been applied to many ap-
plications in the fields of object and face recognition,
action recognition, and segmentation [60], [55], [48].

Consider a given descriptor h∗
j which is a sum of

several basic descriptors: �h∗
j =

∑
i
�hiwij . A set of

descriptors, H∗ = (h∗
1| . . . |h∗

m), may be written as
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H∗ = HW , where the columns of H are the basic
descriptors and the columns of W are the mixing
weights. The basic algorithm proposed by Lee and
Seung [30] gets a matrix H∗ and tries to find a pair of
low rank nonnegative matrices H and W satisfying

min
H,W

Distφ(H∗, HW )s.t.W ≥ 0, H ≥ 0, (1)

where the distance φ is either the Frobenius norm
or the Kullback-Leibler distance. Although these
distances have nice mathematical properties (e.g.,
bounded reconstruction error for the Frobenius norm
[23]), they are not always the best choice for sig-
nal comparison. Some variations, adding a bias to
desirable properties such as locality, were suggested
[33], [26], [16]. The obvious nonuniqueness of the
factorization was also discussed [17], [6] and usually
resolved by some problem specific bias.

We believe that measuring the dissimilarity of H∗

and HW as L2 or KL distance, even with additional
bias terms, is inappropriate given the nature of er-
rors in realistic imagery, and other types of distances
should be preferred. In particular, the Earth mover’s
distance (EMD) [45] metric is known (e.g., [58], [45],
[32], [22]) to quantify the errors in image or histogram
matching better than other metrics. The error mech-
anism, modeled as a complex local deformation of
the original descriptor, is often a good model for
the actual distortion processes in image formation.
The EMD, whose variants are known as the Monge-
Kantarovich problem, Wasserstein metric, Mallows
distance, etc., was first applied to computer vision
tasks by Werman et al. [58] and generalized by Rubner
[45]. In this work we propose to factorize the given
matrix using the EMD. That is, we consider here the
minimization (1) where φ is the EMD metric.



We propose here two NMF algorithms for the EMD
metric, denoted EMD NMF and bilateral EMD NMF.
Both differ notably from the multiplicative update
algorithm [29] and its variations [6]. The EMD NMF
algorithms are based on linear programming steps,
and as such are more closely related to the techniques
presented in [24].

We start by showing that, in principle, NMF may be
used for image modeling. We then discuss a distortion
model that motivates our use of the EMD metric.
In the main part of the paper we propose the EMD
based NMF and provide a linear programming based
algorithm for the factorization. A more efficient algo-
rithm, based on Wavelet EMD approximation [53], is
described as well. Two EMD tasks are considered. The
more general algorithm, denoted bilateral EMD NMF,
is suitable for the case when the distortion is modeled
well by small, in the EMD sense, errors in both
spatial and feature domains. The simpler algorithm
is preferred when the distortion fits the EMD model
in only one of the domains.

We then examine the proposed factorizations with
three vision tasks: texture modeling, face recognition,
and image segmentation. Given an unlabeled image
containing multiple textures, we extract the descrip-
tors of individual textures using EMD NMF instead of
actually segmenting the image. In the face recognition
task, we handle unaligned facial images with some
pose changes and different facial expressions. Finally,
we show, for the first time, actual NMF based image
segmentation. In all cases we consider sets of natu-
rally deformed signal samples and reconstruct parts
which appear to be the meaningful original signals.
Our main contributions in this part of the paper are
in demonstrating the superior performance of basic
EMD NMF methods over other component analysis
methods, some of which use problem specific bias
terms.

This paper extends a preliminary version [50] by
proposing the more general bilateral EMD NMF and
discussing its relation to image modeling. With this
as our foundation, we propose for the first time an
NMF-based method for image segmentation.

This paper continues as follows: the relation of
the NMF variables to the image model is shown in
section 2. The formal definitions of NMF with the
EMD metrics as well as the linear programming based
algorithm are presented in section 3. Wavelet based
approximation and other practical implementation
details of the proposed factorization are discussed in
section 4. Experiments with two actual vision tasks
are discussed in section 6.

2 OBSERVATIONS AND INTUITIONS

The EMD NMF methods we propose are general and
are not limited to an image domain. For concreteness
and a more intuitive explanation, we chose to focus
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Fig. 1: Bilateral relation between the spatial and the feature
domain representation. The image (a) may be represented in
two domains. The highlighted spatial bin is associated with
feature distribution hx0(f) - (b). The highlighted feature bin
in the whole image histogram h(f) (d) is associated with
spatial distribution hf0(x) - (c). The highlighted bins in the
spatial (c) and the feature (b) distributions are identical;
hf0(x0) = hx0(f0).

here on image representation. Consider an image
f(�x) describing some feature f as a function of the
coordinate �x. We shall be interested in two types
of histograms representing, respectively, parts of the
image and parts of the feature space.

A feature distribution h�x(f) corresponds to a
region R�x in the image and describes the feature
distribution corresponding to the pixel values in
this region.
A spatial distribution hf (�x) corresponds to a
subset f of the feature space and describes the
distribution of spatial locations corresponding to
pixels having a value in this subset. Note that
the spatial distributions do not necessarily sum
to one.

See Figure 1 for the relations between the two do-
mains and the respective histograms. In this work
we consider only spatial regions and feature domain
subsets large enough to contain a reasonable number
of samples. Note that many other image represen-
tations follow this formulation. Two examples are
orientation histograms [34] and Gabor jets [51]. While
both coordinates may be multidimensional, e.g.,Gabor
jets, we chose to discuss only a scalar feature f in the
following lines for simplicity.

Consider representing an image object, or several
similar objects (denoted visual class through this pa-
per), using spatial and feature distributions. Ideally,
we would expect such an object to be associated with
the same feature vector in all its locations. We would
also expect the spatial distributions to be piecewise
constant within the objects for every feature subset.
Naturally, this expectation is unrealistic and the re-
spective distributions are somewhat different, though
these differences often follow a systematic pattern



described below.
Consider a region belonging to a visual class with

some ideal gray level histogram h(f). Different re-
gions of the same class may be associated with dif-
ferent surface normal directions and corresponding
histograms which are brighter or darker. In this case,
the absence of some gray level in the histogram is
better explained by the presence of additional gray
levels in nearby feature histogram bins than in the dis-
tant, unrelated bins. Consider now the spatial domain.
In realistic textures, the distribution of gray levels in
every region is not entirely uniform. Consider, for
example, two adjacent regions in an image of a zebra.
One region may contain more black pixels than the
other, but the union of the regions has a histogram
which is closer to the ideal class histogram. More
generally, the absence of some gray level in a spatial
bin is better explained by the presence of surplus
instances of this gray level in nearby spatial bins than
in other locations. This model of distortion leads to
comparison of distributions with the Earth mover’s
distance, as will be explained in greater detail in the
next section.

The proposed image model is well-suited to the
NMF representation. Let the (i, j)-th element of H∗

measure the number of pixels with the i-th feature in
the j-th region of the image. Then, the j-th column of
H∗ contains the feature distribution in region j, hj(f).
Analogously, the i-th row contains the spatial distrib-
ution of the i-th feature subset, hi(�x). The factorization
variables, H and W , refer to the feature and spatial
representations of the visual classes of the image. The
columns of H represent the ideal feature distributions
and the rows of W represent the ideal visual class
locations, the image segments. The value of the (i, j)-
th bin in the product matrix HW is the sum of i-th
feature probabilities in different classes weighted by
their relative area in j-th region. In other words, it
tells us how many of the feature values in the range
i we expect to find in region j, which is exactly the
property the (i, j)-th bin of the matrix H∗ measures.

By factorizing H∗, we perform clustering in both
spatial and feature domains. For image segmentation
it is common to consider such groupings and gather
pixels with similar appearance features and spatial lo-
cations. Some methods, for example, explicitly use this
principle by clustering pixels in a combined (color,
spatial coordinates) space [54], [14] Here we show that
NMF models both the spatial and the feature image
descriptors in a complementary way and acts as an
iterative, EM-like, segmentation algorithm.

For reasonable factorization we should ensure that
H∗ ≈ HW and that the differences follow the local
deformation model we discussed earlier. This compels
us to require minimization of the EMD error between
both the rows and the columns of H∗ and HW . In the
next sections we quantify these requirements and use
them to propose EMD NMF.

3 EMD NMF
Consider M nonnegative histograms with N bins.
The histograms are represented in a matrix form,
H∗ ∈ RN×M , where the j-th histogram is the column
H∗

j . The matrix H∗ may be decomposed into a product
of H ∈ RN×K and W ∈ RK×M , where H and W are
interpreted as K basis vectors in two complementary
domains. In most cases, a low dimensional approxi-
mation is more meaningful than exact factorization.
Then, the desired factorization H, W is a solution of
eq. (1) for small K values. Let Distφ(A, B) be the sum
of distances φ between the corresponding columns
of A and B. Then, H∗T ≈ WT HT implies that
Distφ(H∗, HW ) is the sum of distances between the
feature histograms. Analogously, H∗T ≈ WT HT im-
plies that Distφ(H∗T , WT HT ) is the sum of distances
between the spatial histograms. Therefore, in order to
find the spatial distributions, we should factorize H∗T

by solving

arg min
H,W

Distφ(H∗T , WT HT )s.t.W ≥ 0, H ≥ 0. (2)

A joint clustering in both domains is, therefore,

arg min
H,W

λ1Distφ(H∗, HW ) + λ2Distφ(H∗T , WT HT )

s.t. W ≥ 0, H ≥ 0. (3)

Conveniently, the L2 distance is bin-wise and
Distφ(H∗, HW ) = Distφ(H∗T , WT HT ). Thus, seg-
menting an image in spatial and feature domains is
equivalent to solving the traditional L2-NMF of the
feature distribution matrix associated with this image.
Unfortunately, this algorithm fails for real images.
Solving (3) with L2-NMF implicitly associates the
error independence assumption with different his-
togram bins. This assumption is not a good model for
the sample deviation in the approximation H∗ ≈ HW ,
neither in the feature nor the spatial domain. As
already mentioned, we propose to use the EMD metric
for column comparison and show its ability to solve
such problems.

3.1 Earth mover’s distance

The Earth mover’s distance (EMD) evaluates the dis-
similarity between two distributions in some feature
space, where a distance measure between single fea-
tures is given [45]. For image features, the EMD
is motivated by the following intuitive observation:
Some histogram bin mass may transfer to nearby
bins due to natural image formation processes. The
distance between two distributions which may be
considered as small local deformations of each other
should be less than that of other distribution pairs
which differ in non-neighboring bins. Intuitively, we
can view the traditional EMD metric as a sum of the
changes required to transform one distribution into
the other with low cost given to local deformations
and high cost to nonlocal ones. Formally, the EMD
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Fig. 2: Intuitive explanation of the model. The feature distributions in the graphs ((b)) (lower, feature histograms, upper
cumulative histograms) are associated with the squares on the image ((a)). The red dotted lines refer to the red squares lying
inside the totem segments, the green dashed lines refer to the green squares lying inside the background segments, and
the yellow solid lines refer to the yellow squares intersecting the totem and background segments. The feature indicator
images ((c)) show the pixels with equal feature values. The respective spatial histograms are shown in ((d)).

distance between two histograms is formulated as
a linear program (5, 6) whose goal is to minimize
the total flow f(i, j) between the bins of the source
histogram (i) and the bins (j) of the target histogram
for a given inter-bin flow cost d(i, j); see [45]. The cost
parameter d(i, j), denoted also the ground distance,
specifies the inter-bin flow cost for each pair of source
and target bins. EMD is a metric when d(i, j) is a
metric as well; thus, we consider here only this type
of cost function and denote it the underlying metric.

We consider a nonnormalized distance

EMD(hs, ht) =
∑
i,j

f(i, j)d(i, j), (4)

where f(i, j) is a solution of:

min
f

∑
i,j

f(i, j)d(i, j) (5)

s.t. f(i, j) ≥ 0,∑
j

f(i, j) ≤ hs
i ,

∑
i

f(i, j) ≤ ht
j, (6)

∑
i,j

f(i, j) = min

⎛
⎝∑

i

hs
i ,

∑
j

ht
j

⎞
⎠ ,

because the total flow in our case is prespecified.

3.1.1 Earth mover’s distance between matrices

We define EMD between two matrices with M
columns as a sum of EMDs between each column in
the source matrix and the corresponding column in
the target matrix:

‖Hs −Ht‖EMD =
M∑

m=1

EMD(Hs
m, Ht

m). (7)

For columns representing feature vectors, this dis-
tance measures the sum of distances between re-
spective feature pairs. Naturally, to consider EMD in
spatial domain, we should find ‖HsT −HtT ‖EMD.

3.2 Single domain LP-based EMD algorithm

The general NMF problem is nonconvex and has a
unique solution only for limited cases [17]. However,
if one of the variable matrices H or W is given,
the problem becomes linear. Thus, by consecutively
fixing either H or W , one can find a local minimum
for (1) by solving a sequence of convex tasks. This
approach is also applicable to the case at hand by a
simple reformulation of the EMD linear programming
problem. As a result, the local minimum of EMD NMF
is found by solving a sequence of linear programming
tasks.

Consider hs = H∗
m and ht = (HW )m. Note that

both vectors are normalized histograms and thus sum
to one:

∑
i hs

i =
∑

j ht
j = 1; this constraint implies

that the columns of W sum to 1 as well. With these
normalizations, the linear programming constraints
associated with the EMD between H∗

m and HWm (eq.
6) become

fm(i, j) ≥ 0,∑
j

fm(i, j) = H∗(i, m), (8)

∑
i

fm(i, j) =
∑

k

H(j, k)W (k, m).

Note that the constraint
∑

i,j fm(i, j) = 1 is satisfied
automatically since

∑
i,j fm(i, j) =

∑
i H∗(i, m) = 1.

Note also that if we know H , both fm(i, j) and the
matrix W minimizing it may be found as:

arg min
f,W

∑
m

∑
i,j

fm(i, j)d(i, j) s.t. (8). (9)



Analogously, if we know W , we can find both fm(i, j)
and the matrix H minimizing it as:

argmin
f,H

∑
m

∑
i,j

fm(i, j)d(i, j) s.t. (8). (10)

Thus, given some initial guess for H or W , we can
improve the solution by the following two-phase Al-
gorithm 1.

Algorithm 1 EMD NMF

Input: The objective matrix H∗ ∈ RN×M and an
initial guess for the basis H0 ∈ RN×K .

1: Find W 0 using (9).
2: k = 0
3: repeat
4: k=k+1
5: Find Hk using (10).
6: Find W k using (9).
7: until

ε >
∣∣‖H∗ −HkW k‖EMD − ‖H∗ −Hk−1W k−1‖EMD

∣∣
Output: W k and Hk.

For columns representing feature distributions, this
algorithm finds a set of basic distributions (H) and the
mixing weights (W ) to construct the samples in H∗

from this set. For the spatial domain we factorize H∗T .
This way we find a set of basic spatial distributions
(rows of W ) and the mixing weights (H) to construct
the samples in H∗ from this set.

3.3 Convergence

Theorem 1.1: Algorithm 1 converges to a local min-
imum

Proof:
1) Feasibility: First note that Algorithm 1 is a

sequence of LP processes. We should show that
a feasible solution exists for every one of them.
The minimization (9) gets a pair H∗, Hk of nor-
malized matrices. Any normalized matrix W k

ensures that
∑

i H∗
mi =

∑
j(HW )mj and thus

implies that a feasible solution exists. This fol-
lows from EMD being a transportation problem,
which has a feasible solution when

∑
i hs

i =∑
j ht

j [25]. An identical argument shows the
existence of a feasible solution for minimization
(10).

2) Linear programming, by definition, minimizes
the flow cost and, due to (7), minimizes ‖H∗ −
HW‖EMD. Thus, applying (10) finds globally
optimal Hk for a given W k−1 and applying (9)
finds globally optimal Wk for a given Hk.

3) Since the objective in (10) and in (9) is the same,
‖H∗ −HkW k−1‖EMD ≤ ‖H∗ −Hk−1W k−1‖EMD

and ‖H∗ −HkW k‖EMD ≤ ‖H∗ −HkW k−1‖EMD.
4) From the above it follows that every cycle of

Algorithm 1 monotonically decreases the dis-

tance ‖H∗−HkW k‖EMD. This distance is lower-
bounded, and therefore the algorithm converges
(to a local minimum).

3.4 Bilateral EMD NMF

Algorithm 1 minimizes the EMD distance between the
corresponding columns of a given matrix and a matrix
product approximating it. Note, however, that in the
general case specified by eq. (3), our goal is to mini-
mize EMD distance both between the corresponding
columns and the corresponding rows. W.l.g. we shall
denote the columns as feature distributions and the
rows as spatial distributions, as we did in section
2. The proposed bilateral NMF is a mathematically
similar extension of Algorithm 1: while Algorithm 1
considers only the feature domain but regards the
spatial histogram errors as independent, we now add
the minimization of the EMD in the spatial domain
to the optimization function. Thus the bilateral EMD
distance is

BEMD(H∗, HW ) = λ1

M∑
m=1

EMD(h∗
m, Hwm) (11)

+ λ2

F∑
f=1

EMD(H∗T
f , WT HT

f ).

Both EMD terms depend, of course, on the ground
distance metric [45]. See the detailed specification
below.

To minimize this proposed distance, we extend the
EMD NMF technique of alternating convex minimiza-
tions. Thus, analogously to Algorithm 1, each step of
the proposed minimization is a linear programming
task, and a sequence of such tasks achieves a local
minimum and provides estimates for H and W .

The EMD between one column of H∗
m and Hwm is:

min
fm

∑
i,j

fm(i, j)df (i, j) s.t. (8) (12)

where fm is a variable measuring the flow that
we want to minimize between the histogram bins,
and df (i, j) is a ground distance measuring the cost
of moving between the bins. In the new distance
we need to minimize the flow fm between feature
histogram bins while also minimizing the flow fs

between spatial histogram bins. Thus, the new cost
function is:

min
fm,fs,zi

∑
m,i,j

fm(i, j)df (i, j) +
∑
s,x,y

fs(x, y)dx(u, v) (13)

subject to the constraints (8) and the additional con-
straints on the spatial flow for the i-th rows in H∗ and



HW :

fs(u, v) ≥ 0,∑
v

fs(u, v) ≤ H∗(i, u), (14)

∑
u

fs(u, v) ≤
∑

k

H(i, k)W (k, v),

∑
u,v

fs(u, v) = min

⎛
⎝∑

x

H∗(i, u),
∑
k,v

H(i, k)W (k, v)

⎞
⎠ .

The ground distance dx(u, v) measures the cost of
moving between the spatial bins u and v.

The alternating steps are:

W step – minimize (13) for fm, fs, and W such
that (8) and (14).
H step – minimize (13) for fm, fs, and H such
that (8) and (14).

Note that the two sets of constraints (8) and (14) are
not of the same form. The first specifies equality con-
straints and thus requires the total flow

∑
i

∑
j fm(i, j)

to equal one. This is necessary to ensure that the
columns of the solution matrices H and W still sum to
one. The second constraint set (14), on the other hand,
cannot be of the equality type, because formally there
is no constraint on the sums of the H and W rows. In
practice, however, the sums of the HW rows are very
similar to the sums of the H∗ rows. We apply here
the standard inequality constraints of the EMD [45].
In a sense, this formulation of the problem may be
regarded as solving EMD NMF between the columns
with an EMD penalty term on the distance between
the rows.

4 EFFICIENT EMD NMF ALGORITHMS

It is possible to find a local minimum of (7) by
iterative application of (10) and (9) starting from
some reasonable guess for H . Linear programming
is a well-studied problem and plenty of freeware and
commercial solvers are available. However, for (10)
the dimension of the problem is MN2. This means
that even for a traditional, relatively small problem of
factorizing 100 facial images (each in 16 × 16 resolu-
tion), the LP optimization problem operates about 6
million variables. This makes even the specification of
the problem (construction of the constraint matrix) a
challenging task with today’s solvers.

Most of the variables arise from the need to calcu-
late the flow fm(i, j) (and possibly fs(i, j)) in order to
estimate the EMD between the histograms. The actual
variables of interest are H and W , which are only a
small fraction of the variables in both (9) and (10).

4.1 A gradient based approach

The task of finding Hk and W k in each step of
Algorithm 1 is:

Hk = argmin
H

∑
m

EMD(H∗
m, (HW k−1)m)

W k
m = argmin

W
EMD(H∗

m, (HkW )m). (15)

For bilateral EMD NMF it is:

Hk = arg min
H

BEMD(H∗, (HW k−1))

W k = arg min
W

BEMD(H∗, (HkW )). (16)

Given both H and W , the error (7) can be calculated
by solving M (or M+N ) independent, relatively small
LP problems. We can solve both minimizations in (15)
or (16) with some gradient based optimization over
possible H (or W ) values. We are guaranteed to find
the globally optimal solutions for each optimization
because tasks (9) and (10) are convex.

Unfortunately, the complexity of a single precise
EMD computation is O(N3logN ). Thus, the gradient
based approach is expected to be complex as well.

4.2 A gradient optimization with WEMD approxi-
mation

Much effort has been devoted to speeding up the
EMD calculation. For some underlying metrics it is
easier than for others. For example, the match dis-
tance [58], which is the EMD between 1D histograms
with a specific underlying metric, can be calculated
as an L1 distance between the cumulative versions
of the histograms. A short survey of other methods
suggested for faster EMD calculation may be found
in [53], [42].

Shirdhonkar and Jacobs [53] proposed an efficient
way to calculate the EMD between two histograms for
some common underlying metrics d(i, j). They proved
that the result of optimization (5) is approximated
very well by:

d(ht, hs)WEMD =
∑

λ

αλ|Wλ(ht − hs)|, (17)

where Wλ(ht − hs) are the wavelet transform coef-
ficients of the n dimensional difference hs − ht for
all shifts and scales λ, and αλ are scale dependent
coefficients. The different underlying metrics are char-
acterized by the chosen scale weightings and wavelet
kernels. Note that we are looking for local minima
of some calculated EMD values and not for the EMD
values themselves. Empirically we found that the local
minima of EMD and WEMD are generally co-located,
and thus the accuracy of the WEMD approximation
of the actual EMD is less important for our goal.

Using the approximation (17) in (15) and (16) re-
duces the computational complexity of EMD to be
linear. However, gradient methods naturally require



knowledge of the gradient for the optimization vari-
ables. In the case of linear programming, the gradient
may be derived from the solution of the dual prob-
lem; therefore, it is a byproduct of EMD calculation.
Unfortunately, for the WEMD we need to calculate the
gradient separately. This gradient is:

∇dWEMD =
∑

λ

αλ · sign(Wλ(ht− hs)) · ∇Wλ(ht), (18)

where the explicit expression for the gradient
∇Wλ(ht), with respect to either W or H, is lengthy
but straightforward. The complexity of the gradient
(18) computation for H is O(N 2K). Note, however,
that many additives remain constant between the
iterations, and a smart calculation of the gradient
greatly accelerated the computation.

Note that formally applying WEMD requires equal-
ity constraints in (14). This condition is not satisfied,
but in practice the sums of the H∗ rows are similar to
those of the HW rows. Thus we used WEMD to find
the EMD and its gradient for both the columns and
the rows of the matrices.

4.3 The optimization process

We tested two optimization strategies: constrained
optimization (H ≥ 0, W ≥ 0) of the distance (17),
and unconstrained optimization with high penalty for
negative variable values:

arg min
x

∑
m

d(H∗
m, HWm)WEMD + Φ(x), (19)

where x is either W or H according to the relevant
iteration and Φ(x) is a quadratic penalty term for x <
0. The latter unconstrained optimization appears to be
more precise and faster.

Still, EMD NMF iterations are more complex than
those of L2-NMF. Using Matlab on an Intel Core 2
Quad 2.5 GHz processor, one full H iteration for
M = 256, N = 32, K = 3 (corresponding to the texture
experiment described in section 5.2) takes around 30
seconds. One full H iteration for M = 200, N =
1024, K = 40 (corresponding to the face recognition
experiment described in section 5.1) may take up to
20 minutes.

5 APPLICATIONS

NMF is useful especially when the analyzed data are
a mixture of data from several sources. The use of the
EMD metric is preferable over L2 when bin dependent
changes in histograms are more likely than indepen-
dent ones. We start with a classic NMF application –
face recognition. Interestingly, we found that the basis
images obtained with EMD NMF differ considerably
from the face parts supposedly obtained by L2-NMF
based methods, and lead to more accurate recognition.
Then, we show how to extract texture descriptors
from texture mosaic images. Finally, we use EMD

NMF for image segmentation. In addition, we apply
EMD NMF to estimate the quality of segmentation in
precision/recall terms without supervision [49].

5.1 Face recognition

Face representation is a common test case for the
NMF algorithms [29], [29], [33], [60]. Traditional NMF
algorithms measure the differences between the faces
with translation-sensitive L2 related metrics, and thus
require a good alignment between the facial features.
It was shown that when the NMF is forced to prefer
spatially limited basis components, these L2 based
algorithms perform better and provide perceptually
reasonable parts [33], [26]. Here we show that the use
of NMF with the EMD metric yields different, but
still perceptually meaningful components. We found
that these components are even more efficient for face
classification.

5.1.1 The EMD NMF components

Unlike the L2 distance, the EMD is not very sensitive
to small misalignments, facial expressions, and pose
changes. The basis components provided by the EMD
NMF are facial archetypes, each of which looks like
a slightly deformed face. Each facial feature (e.g., the
shape of the head, the haircut, or the shape of the
nose) associated with some archetype is shared by
several people. The face images in a set associated
with the same person, and with different poses and
expressions, are usually close (in the EMD sense) to a
common facial prototype. This prototype is usually a
convex combination of a small number of archetypes.
Every face image is a combination of a few archetypes
with relatively high coefficients (the prototype) and
some other archetypes with much lower coefficients.

To better illustrate this structure, we start by con-
sidering a simple image set of 4 faces: two parents,
their daughter, and another, male, non-family member
(six images of each person; see examples in Figure 3).
The people in the database share several features. The
males have rougher facial features, while the female
faces are smoother. The daughter shares facial features
with both of her parents, especially with her father.
The 24 images were put into the columns of H∗ and
it was decomposed with EMD NMF with k = 3.
The ground distance is the 2D distances between the
image pixels. Note that the number of archetypes
is smaller than the number of people. The resulting
weight diagram is shown in Figure 3. The 3 weights
associated with every image and the EMD NMF may
be plotted in 2D because w1 +w2 +w3 = 1. See Figure
3, where the input faces are plotted as (w1, w2) points.
The k=3 archetypes correspond to the (1, 0), (0, 1), and
(0, 0) points. The archetypes and some input images
are shown as well. Note the similarity between the
father (red circles) and the daughter (black triangles):
both are represented mainly by the archetype in (0, 0).



Fig. 3: Facial space for 4 people. The two-dimensional
(w1, w2) convex subspace is projected onto the triangle with
corners in (1, 0), (0, 1), and (0, 0). The corners of the triangle
represent the basis facial archetypes obtained by EMD NMF.
The inner points show the actual facial images weighted in
this basis.

However, the father shares some male facial features
with the archetype in (0, 1). The daughter, on the
other hand, shares many facial features with her
mother’s archetype, located in (1, 0). The very notice-
able changes in facial appearance caused by pose and
expression are represented by small translations in the
obtained subspace.

Interestingly, the representation of visual objects as
a combination of object-like archetypes was suggested
as a plausible model for object recognition in the
human visual system [12], [57].

5.1.2 Face recognition algorithm

To demonstrate the power of the EMD NMF, we use
a straightforward recognition algorithm, based on 1-
NN in the coefficient space. Let {(Ij , Cj) j = 1, . . . , L}
be the training set (Ij is an image, and Cj is the
corresponding class label).
Training:
Input: {(Ij , Cj) j = 1, . . . , L}

1: Normalize every image Ij so that ‖Ij‖1 = 1.
2: Decompose the matrix I (with columns Ij), by

EMD NMF, I = HW .
3: Normalize every column wj so that ‖wj‖2 = 1.

Output: H , W

Test:
Input: It, H , W .

1: Normalize the test image It so that ‖It‖1 = 1.
2: Approximate It as a convex combination of H ’s

columns, with weights
wt = argminw EMD(It, Hw).

3: Normalize wt so that ‖wt‖2 = 1.
4: Find j∗ = arg maxj < wj , wt >.

Output: Cj∗ .

Fig. 4: Examples of texture mosaics. The mosaic borders
change randomly, resulting in random combinations of the
textures in the sample rectangles. Here, the images contain
3, 4, 6, and 7 textures. Note the high local variability of the
textures.

This algorithm was successfully tested on two stan-
dard face recognition databases; see section 6.

5.2 Texture modeling

A texture mosaic is an image containing several types
of textures in random arrangements; see examples
from [38] in Figure 4. We consider the task of estimat-
ing the texture descriptors associated with each tex-
ture class of the mosaic. We also would like to classify
the textures in each mosaic location, at least roughly
(e.g., for consecutive segmentation). To that end, we
consider the texture in nonoverlapping square image
patches (blocks). The texture in each block is a positive
mixture of the basic textures. Therefore the NMF
suggests itself as an analysis tool.

The textures in the database [38] exhibit a lot of
spatial variation. Even for relatively large blocks, the
average texture descriptor in the block differs greatly
from the average descriptor for the whole texture
patch. Nor are the mosaics large enough to render
descriptor distribution methods (e.g., [31]) effective.
The EMD metric better compensates for the variability
of the texture descriptor within the same texture than
does L2 [45], [11]. Therefore, EMD NMF is expected
to be more accurate than L2-NMF in estimation of the
texture descriptors and the mixing coefficients thereof.

We rephrase the image model from section 2 as
follows: Let each texture class be associated with some
vector descriptor htrue

k in each location of this texture.
Then the K descriptors associated with a mosaic
image are H true = (htrue

1 , . . . , htrue
K ). Ideally, the mean

texture descriptor in the j-th image block should be



h∗
j = Htruewtrue

j , where wtrue
j is the vector of true

fractions of the j-th block area associated with each
texture class.

We applied the NMF to the texture mosaics by:
1) Converting the image to some feature vector

representation. Following the findings in [45],we
chose to work with the Gabor features, and thus
each location is represented by a 6-orientation
× 5-scale feature vector of Gabor responses [51].
Again, although the texture descriptors are orga-
nized in matrix columns, we consider 2D ground
distance in the scale-orientation space.

2) Dividing the image into M nonoverlapping rec-
tangular blocks and calculating the mean feature
vector h∗

j for each block. We denote all the sam-
pled mean block descriptors H∗ = (h∗

1| . . . |h∗
M ).

3) Finding the factorization H∗ ≈ HW . In this
case only the domain of texture descriptors fits
the EMD noise model, thus we use the single
domain EMD NMF version.

The results of the factorization are the approximated
representative texture descriptors H = (h1| . . . |hK)
and the approximated fraction of each texture in each
block W = (w1| . . . |wM ). In section 6.2 we show
that the results obtained with EMD NMF are more
accurate and more robust than those obtained with
L2-NMF.

5.3 NMF and image segmentation

5.3.1 A naive NMF based segmentation algorithm
The NMF may be applied to image segmentation. We
start by describing a preliminary, naive NMF based
segmentation procedure and then continue develop-
ing it to achieve better results. Suppose that we use
the NMF procedure to obtain an H and W associated
with relatively small tiles Rm covering the image. W
gives us a rough localization of the segments in the
same resolution as the tiles; see Figure 5, top line.
To obtain a refined, pixel resolution segmentation, we
use the following Bayesian consideration: The wk,m

fraction is the fraction of pixels coming from class
k in the tile Rm, and may be regarded as the prior
probability that a pixel in Rm belongs to the class
k. We propose to decide, for every pixel, to which
class it belongs, by means of a maximum a-posteriori
decision. Suppose the image is scalar and F (�x) is the
value in pixel �x. Let Hk,f be the value of the bin
associated with the feature value f in the histogram
of the class k. Then:

C(�x) = argmax
k

P (ck|f = F (�x))

= argmax
k

wk,mHk,F (�x)∑K
k=1 wk,mHk,F (�x)

. (20)

The preliminary NMF-based segmentation algo-
rithm is:

1) Tile the image with M regions.

2) Compute H∗ for these regions.
3) Factorize H∗ with NMF and obtain H and W .
4) Compute C(�x) for each image pixel using

eq.(20).
For computational simplicity we use square tiles.

Unfortunately, this algorithm does not work well
for real images. Even though the EMD NMF succeeds
in finding reasonable approximations for H and W
matrices, as shown in section 6, the inaccuracies in
the obtained W estimations cause frequent errors
in the Bayesian assignment (20). Now we propose
several improvements which bias the bilateral EMD
NMF toward even more accurate W estimation, and
a corresponding better image segmentation algorithm.

5.3.2 Spatial smoothing
Recall that, ideally, the spatial basis histograms W T

are piecewise constant. To use this information, we
propose to implement the NMF under the BEMD dis-
tance with preference to minimizing the total variation
[46]:

[Ĥ, Ŵ ] = arg min
H,W

BEMD(H∗, HW ) + λTV (W ),

where (21)

TV (W ) =
K∑

k=1

M∑
m=1

|dxWm,k|+ |dyWm,k|. (22)

dxWm,k(dyWm,k) is the difference between the spatial
histogram value Wm,k and another value Wm′,k as-
sociated with the following x (y) coordinate on the
image plane.

In the new distance we need to minimize zx and zy

– the differences between neighboring W entries – in
addition to minimizing the flows fm and fs between
the feature and spatial histogram bins. Thus, the new
cost function is:

min
fm,fs,zi

∑
m,i,j

fm(i, j)df (i, j) +
∑
s,x,y

fs(x, y)dx(u, v)

+
∑
m,k

zx(m, k) + zy(m, k). (23)

Subject to the constraints (8), (14), and the addi-
tional constraints on the spatial changes of W (similar
for the x and y directions):

zx(m, k) ≥ 0
−zx(m, k) ≤ dx(Wm,k) ≤ zx(m, k). (24)

The ground distance dx(u, v) measures the cost of
moving between the spatial bins u and v.

The alternating steps become:
W step – minimize (23) for fm, fs, z, and W such
that (8), (14), and (24).
H step – minimize (23) for fm, fs, z, and H such
that (8), (14), and (24).

In practice, we use WEMD based optimization to
solve each step, analogously to what is described in
section 4.



Fig. 5: W estimates by multiscale BEMD. The results are
for three-class factorization. The rightmost image for every
scale shows the boundary class.

5.3.3 Multiscale factorization

The preferred solution for W is piecewise constant.
Thus, we can save a lot of computational effort by
working with W in lower resolution during most
of the factorization process. Moreover, the feature
histogram estimation is more precise when applied
to larger regions, e.g., see section 6.2. To use this
twofold advantage we worked with a hierarchical, or
multiscale, BEMD NMF solver.

First, the image is divided into large tiles and a
small H∗ matrix is built. This matrix is factorized
quickly and a rough W along with a precise H are esti-
mated. Then, the new H∗ associated with smaller tiles
is constructed and factorized with BEMD NMF. The
latter factorization is initialized with the estimated H .

This process may be continued to finer resolutions;
however, for the finer scales, the complexity grows
and the model becomes less accurate. Therefore, we
usually applied the factorization with 3-4 scales; see
Figure 5.

5.3.4 Boundary aware factorization

We refer to a boundary as a special, one pixel wide
segment such that each pixel has at least a pair of
neighbor pixels belonging to different object classes.

Because of its small size and high variability, the
boundary is not modeled as a standard row of W .
In each W step the factorization algorithm associates
a small part α (2.5% in our implementation) of each
non-single-class region to be in the boundary seg-
ment; see Figure 5, the rightmost image for each
scale. For a single-class region (i.e., a region with
Wm,k > 1−α for some k) the boundary class weight is
zero. The boundary class is usually associated with a
wide distribution because of the high variation in the
boundary feature values. Technically, the boundary
class is associated with a column in H and the H
step of BEMD NMF remains the same. Effectively
we gain a twofold advantage: The boundary feature
histogram effectively collects the feature distribution
of the outliers in nonsingular regions and the class
feature histograms become more precise.

5.3.5 Bilateral EMD NMF segmentation algorithm

The final segmentation algorithm (Algorithm 2) is
an enhancement of the first, naive algorithm pro-
posed in the beginning of this section by the spatial
smoothing term, the hierarchical decomposition, and
the boundary extraction. The parameters are: βmax

is the number of scales (we used 3 or 4); Δ is the
length of the tile side (we used ∼ 80 pixels); K is the
manually specified number of classes.

Pixelwise Bayesian assignment sometimes creates
a salt-and-pepper like mix between two classes if
both classes have similar probability in a region. To
avoid this kind of noise, we smoothed the obtained
probability maps with several iterations of anisotropic
diffusion.

Algorithm 2 Bilateral EMD NMF segmentation
Input: I(x, y), K , βmax, Δ.

1: Guess initial Ĥ ∈ Rn×k+1 in a reasonable way. Set
the boundary distribution as uniform.

2: for scale β = 1 : βmax do
3: Calculate H∗β for Δ

β × Δ
β tiles.

4: repeat
5: Find Ŵ β using W step.
6: Ŵ β ← FindBoundary(Ŵ β), see sec. 5.3.4
7: Find Ĥ using H step.
8: until convergence
9: end for

10: Find P (ck|F (�k)) with (20).
11: Smooth P (ck|F (�k)) and find C(�x) with MAP.
Output: Ŵ β , Ĥ, and C(x, y).

6 EXPERIMENTS

We now turn to test the performance of the proposed
algorithms using standard benchmark databases for
each application.



Fig. 6: The Yale faces database. The database contains im-
ages of 15 people, and we considered 8 images for each
person. The first two rows show examples of the database
images. The last row shows the basis images obtained with
EMD NMF.

(a) (b) (c) (d)

Fig. 7: Typical recognition error in ORL database. When the
test face image (a) is in a very different pose from that of
the same person in the training set, the most similar person
in the same pose (b) may be erroneously identified. The
second-most similar identifications (c,d) are correct.

6.1 Face recognition experiment

We tested the EMD NMF based recognition algorithm
on the popular Yale [7] and ORL [47] face databases.
We follow the experimental procedure of [60], so that
we can relate our results to those in [60] using the ORL
database. Therefore, the face images are downsam-
pled so that their longer side is 32 pixels. Moreover,
as observed in [60], the recognition performance de-
pends to a small extent on the partition of the database
into the training and test sets. Following [60] and the
approaches cited there, we provide the best results
obtained in several training/test partitions.

In contrast to [60], we did not tightly align the
faces by forcing the eye positions to coincide. Both
databases contained images that were only roughly
aligned. We did not touch the ORL database and, in
the Yale database, we only centered the faces. This was
necessary to avoid a situation in which facial position
plays too great a role in identification.

The Yale face database contains fewer people than
ORL, but is more challenging for recognition. We used

TABLE 1: Classification accuracies of different algorithms on
the ORL database and the corresponding basis sizes cited
from [60].

Algorithm NMF LNMF NGE PCA LDA MFA
Basis Size 158 130 121 105 39 48

Accuracy (%) 74.0 87.5 95.5 85.5 94.5 95.5

TABLE 2: Classification accuracy of EMD NMF on the ORL
database for different basis sizes.

Basis Size 2 5 8 10 20 30 40 50
Accuracy (%) 8.5 70.5 87.5 94.5 90.5 95.0 96.5 97.0

a subset of it containing a set of images correspond-
ing to the same lighting direction. Even with this
restriction, the recognition task is not easy due to
the high variability of expressions and to the possible
presence of glasses. This implies that even for the best
partition of the database into training and test sets,
the test faces always differ considerably from their
closest training examples. Four images were used to
represent every person in the training set. A relatively
high recognition rate of 86.6% was achieved using
only 6 basis archetypes (representing 15 people). The
archetypes obtained in this test are shown in Figure
6 together with examples of the faces they represent.
Increasing the number of archetypes to 15 (one per
person) increased the recognition rate to 95%. All the
misses are due to glasses appearing in the test image
but not in the corresponding training images.

It is interesting to observe that the proposed al-
gorithm does not behave like a nearest neighbor
algorithm with EMD metric. When a representative
archetype for each person was computed as the
image minimizing the sum of EMD distances over
the corresponding training images, and 1-NN (with
EMD metric) was used for recognition, accuracy was
only 73.3%. This advantage of the EMD NMF based
algorithm could be predicted also from the weight
diagram in Figure 3, where, clearly, the father’s im-
ages are closer to the daughter’s mean image than to
his own mean image (in weight space) and can be
recognized only by the additional components.

The ORL database contains images of 40 people
and is somewhat easier. As in [60], five images were
used to represent every person in the training set. The
recognition accuracy naturally changes with basis size
K . For K equal to or larger than the number of classes
(people), the EMD NMF algorithm outperforms all
the NMF based algorithms considered in [60], which
often use much larger bases; see Table 1. Even with
much lower basis dimension, the proposed algorithm
achieves very high, competitive, accuracy.

Analyzing the (few) recognition errors, we found
that they are associated with poses which differ no-
tably from those in the training set; see Figure 7.

6.2 Texture descriptor estimation

We applied the algorithm described in section 5.2 to 90
online generated mosaics [38]. Each test was repeated
for combinations of two parameters: the number of
textures in the mosaic (K = 3, . . . , 12 textures) and
the number of blocks M = 16, 64, 256, 1024 (number
of columns in H∗). The blocks tessellate the image.
Therefore, M also specifies the block size to be 128×
128, 64 × 64, 32 × 32, and 16 × 16 pixels respectively.
In each test the K parameter was set to the number
of texture classes in the image.

We compared the estimated H and W matrices
with the actual matrices Htrue and W true using the
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Fig. 8: Texture descriptor estimation accuracy. The first row
shows the reconstruction quality of the basis descriptors
and the second row shows the reconstruction quality of the
mixing coefficients. The left column shows the average (over
different K-s) reconstruction quality for the different sizes
of the sampling blocks and the right column demonstrates
the reconstruction quality as a function of the number of
texture classes for two sizes of the sampling blocks.

following correlation measure:

Qa(A, Atrue) =
1
K

K∑
i=1

< �ai, �atrue
i >

‖�ai‖‖ �atrue
i‖

. (25)

The estimated Qh = q(H, Htrue) and Qw =
q(WT , (W true)T ) values for the different test parame-
ters are shown in Figure 8. The columns/rows are
assigned to the respective ones in the true matrices by
sequential greedy assignment, which maximizes Qa.
Note that as the block size increases, the descriptors
H∗ are evaluated over a bigger area and are thus more
precise for both metrics.

The graphs in Figure 8 illuminate two important
differences in the behavior of the two metrics. Al-
though they perform comparably when sufficient (64)
samples of relatively reliable (64× 64 blocks) of data
are available, EMD NMF outperforms L2-NMF when
the number of sample vectors is small or the samples
less reliable. For the EMD metric, the performance of
the H reconstruction does not depend on the number
of classes, whereas for the L2 metric it decreases
with a larger K . These findings also support the
observation that EMD is more robust when ideal data
is not available.

In addition to the mean of the column/row correla-
tions (25), we also measured their standard deviation.
We found that the EMD NMF is generally associated
with much smaller (in 30-50%) standard deviation
than the L2-NMF. The intuitive explanation is that
while the L2-NMF estimations of H columns and
W rows are either very accurate or very inaccurate,
the EMD NMF estimations are generally more stable.

Together with the average correlation results, this
makes the EMD NMF estimations for both H and W
more reliable than those of L2-NMF.

6.3 Segmentation

We experimented on two popular image databases:
the Berkeley Segmentation Dataset [37] and the Weiz-
mann Segmentation Evaluation Database [1]. Both
databases are built on similar ideas and provide tools
to benchmark algorithm performance using the man-
ual segmentations of the database images. Both test
performance in similar terms – an algorithm receives
an F -number score for each segmented database im-
age.

The evaluation task associated with the F -value
score is different for the two databases. The score
in the Berkeley database judges the algorithm by its
ability to detect all object boundaries specified in man-
ual segmentations and to avoid boundary detection
in other places. The evaluation task in the Weizmann
database is to specify the main object’s pixels in the
image as accurately as possible.

We performed a similar simple test on both data-
bases. Each pixel was characterized with gray level
value and gradient size as its 2D feature. Each image
was segmented with Algorithm 2 into a manually
specified number (between 2 and 7) of classes and
the boundary class. In both tests the proposed algo-
rithm showed consistent results; see some examples
in Figures 9 and 10. However, the interpretation of
these results is different for the two databases.

Weizmann database. The goal of this database
benchmark is to detect the main object in the image
accurately. The database was purposely designed to
contain “a variety of images with objects that differ
from their surroundings by either intensity, texture,
or other low level cues.” These low level cues may
differ along the goal object as well as along the
background. The images in the database are gray
scale. The best achieved performance of the algorithm
on this database was F = 0.83. According to [1],
this performance is much better than that of N-Cut
(F = 0.72) and MeanShift (F = 0.57) and even better
than that of some complex multifeature algorithms.
The algorithm best succeeded with images having
different feature descriptions of the object and the
background, no matter how complex this description
is, and failed mostly on the images where the object
and background descriptions share a large part of the
feature space, especially if these shared features have
large spatial presence; see examples in Figure 9.

Berkeley database. The Berkeley test checks an
algorithm’s performance on boundary detection tasks
for color images. The ground truth segmentations
include some of the image objects chosen manually.
Algorithm 2 provides for each image point a proba-
bility to be a boundary point. These probability maps
were tested by the database benchmark tools.



Fig. 9: Segmentation examples, Weizmann database

Fig. 10: Segmentation examples, Berkeley database

Testing the object on this database reveals both the
merits and the deficiencies of the algorithm. While
its results (F = 0.55) are worse than those obtained
by state-of-the-art learning based algorithms [3], it
should be noted that the state-of-the-art results are
obtained using the color information from the images.
Our results are similar to those obtained by N-cut and
mean shift on grayscale images [49]. Looking at some
examples, it is apparent that the algorithm is able to
extract the appearance model but fails to exploit this
knowledge to segment the fine details of the object.
Stronger features (e.g., texture and color) and a more
sophisticated final segmentation stage are needed to
exhibit the strength of the proposed algorithm in this
test.

7 CONCLUSIONS

A new type of NMF task, NMF with EMD metric,
is proposed. The problem is solved with a linear
programming based iterative algorithm. A WEMD
[53] based optimization technique is proposed for
fast implementation of the proposed algorithm. Al-
gorithms based on the proposed EMD NMF outper-
formed previous NMF based algorithms in the context
of two challenging computer vision tasks.

The main advantage of the new approach would
seem to be its enhanced robustness. Consider, for ex-
ample, the task of identifying a set of basis descriptors
from mixture measurements. When the given mea-
surements closely approximate linear combinations of
the hidden descriptors, then the L2 NMF technique
suffices to accurately extract the basis. When the mix-
tures are, however, mixtures of deformed descriptors,
this is no longer the case. Nonetheless, the deformed
descriptors may be close, in the EMD sense, to the
original descriptors. Then, the mixture of deformed
descriptors is EMD close to the mixture of origi-
nal descriptors (with the same weights). This lower
sensitivity to deformations allows the EMD NMF to
succeed when the L2-NMF does not. Note that this
situation is typical when we approximate a histogram
from a small sample mixture.

The image model discussed in the paper proposes
to use the enhanced properties of EMD NMF for
a simple and elegant image description as a matrix
product. Naturally, the simple linear model merely
replaces the complex, nonlinear approximation with
the more complex EMD metric. However, it allows
an elegant image analysis independent of technical
details.

Each of the considered applications is just a
straightforward demonstration of the advantages of
EMD NMF. Future research will be concerned with
converting each of them into full-scale face recogni-
tion, database search, and segmentation tools.
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