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Abstract

Convolutional neural networks (CNNs) provide the cur-
rent state of the art in visual object classification, but they
are far less accurate when classifying partially occluded
objects. A straightforward way to improve classification
under occlusion conditions is to train the classifier using
partially occluded object examples. However, training the
network on many combinations of object instances and oc-
clusions may be computationally expensive. This work pro-
poses an alternative approach to increasing the robustness
of CNNs to occlusion.

We start by studying the effect of partial occlusions on
the trained CNN and show, empirically, that training on
partially occluded examples reduces the spatial support of
the filters. Building upon this finding, we argue that smaller
filter support is beneficial for occlusion robustness. We pro-
pose a training process that uses a special regularization
term that acts to shrink the spatial support of the filters. We
consider three possible regularization terms that are based
on second central moments, group sparsity, and mutually
reweighted L1, respectively. When trained on normal (un-
occluded) examples, the resulting classifier is highly robust
to occlusions. For large training sets and limited train-
ing time, the proposed classifier is even more accurate than
standard classifiers trained on occluded object examples.

1. Introduction
Deep Convolutional Neural Networks [14] have recently

exhibited remarkable performance in the task of image clas-
sification [12]. The availability of large amounts of an-
notated data [3], parallel computational resources such as
GPUs, and regularization techniques [20, 9, 25] have con-
tributed greatly to CNN performance. Deeper, more so-
phisticated, network topologies have continuously provided
state-of-the-art results [19, 21, 10].

Nevertheless, CNNs, as well as other visual classifica-
tion algorithms, are far less accurate when classifying par-
tially occluded objects; see Figure (1). The decrease in per-
formance is especially severe when the classifier is trained

Figure 1: (Left) Classification error rates for AlexNet and
VGG16 under occlusions of various sizes. Note that even
the slightest partial occlusion may significantly reduce clas-
sification accuracy. (Right) Examples of partially occluded
examples used for validation.

as usual, on images of mostly unoccluded objects. This
problem could be regarded as a special case of domain adap-
tation, where the training data and the test data are drawn
from different distributions.

Thus, one possible approach to improving classification
accuracy under partial occlusion is to train the classifier on
partially occluded objects as well [17]. In the first part of
this work we experimented with this approach and indeed
found that the classification accuracy improved. We also
examined the resulting network and observed that (a) its fil-
ters (in all layers) tend to be of smaller spatial support, and
(b) every filter uses more features from the previous layer.
Intuition tells us that smaller spatial support makes the fil-
ter more robust to occlusion because the probability that a
random occluder will intersect with the filter support and
adversely affect its response is smaller. But does it really
explain the classifier’s greater robustness to occlusions?

To validate the hypothesis that smaller spatial support is
indeed important for occlusion robustness, we propose, in
the next part of this work, to reduce the spatial support in
a different way, by specialized regularization. We propose
three possible regularization terms that act to shrink the spa-
tial support of the filters. These regularization terms are
based on second central moments, group sparsity, and mu-
tually re-weighted L1, respectively. When trained on nor-
mal (unoccluded) examples, the resulting classifier is usu-
ally (for large training sets) more occlusion robust than stan-
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dard classifiers trained on occluded object examples. This
indeed shows that smaller spatial support is beneficial for
occluded object classification.

Note that the first approach requires a large number of
occluded object examples in order to represent the distri-
bution of all object instances from the class under all typ-
ical occluders. To synthesize many occluded object exam-
ples from regular images of unoccluded objects, we need to
know the object location within the image, which requires a
large labeling effort. Natural, unsynthesized occlusion ex-
amples are rare, requiring labeling as well. In both cases the
number of examples and the computational effort are large.
The proposed classifiers with the specialized regularization,
on the other hand, are trainable on the usual datasets.

Our contribution in this paper is twofold: first we analyze
the effect of training with occlusions on CNN visual clas-
sifiers, and in particular show the reduction of the filters’
spatial support, accompanied by an increase in its effective
depth. Then we show that similarly reduced spatial support
of the filters may be obtained by training on unoccluded ex-
amples by special regularization. We introduce 3 different
types of such regularization and show that it improves the
classifier’s robustness to occlusions.

The rest of this paper is organized as follows. We start
by describing some related work in Section 2. Section 3 an-
alyzes the CNN trained on occluded object examples. Sec-
tion 4 introduces the occlusion-robust CNN. Finally, we de-
scribe our experiments and conclude our work in Sections
5 and 6. Derivation details and more experimental results
(with AlexNet and VGG16) are described in the Appendix.

2. Related Work
Partial occlusion is one of the major challenges in visual

object classification. Fukushima [5] suggests that human
vision tends to struggle when the occlusion pattern is unno-
ticeable. He proposes a neural network algorithm that first
detects the occlusion and then nullifies the corresponding
activation map locations. BoW methods [2, 13, 23] gen-
erate local pieces of evidence and therefore should be, in
principle, relatively robust to occlusions. Nonetheless, they
often fail when the object is partially occluded. DPM al-
gorithms [4] still respond positively when one of the parts
is undetected, but their performance deteriorates. Other ap-
proaches, which relies on HOG features, model the occlu-
sion as a binary coarse grid and explicitly infers it, using a
computationally algorithm [?, 6].

CNNs provide the best visual classification results but
their accuracy decreases when the network that was trained
on unoccluded training images is fed with partially oc-
cluded test images [17]. They found that training several
sub-networks for each occlusion ratio is sub-optimal, and
suggest that architectural changes may be required to im-
prove occlusion robustness. The authors of [8] quantify

t

Figure 2: An illustration of how filter support amplifies par-
tial occlusion effect. A 3× 3 image with a partial occlusion
(red) is filtered with a 2 × 2 filter. 25% of the feature map
elements are corrupted. When filtered with a 3 × 3 filter,
36% of the feature map elements are corrupted.

the invariance of different features of the network to sev-
eral transformations. They suggest that weight sparsity may
contribute to occlusion invariance. A recent contribution fo-
cuses on face recognition and achieves occlusion robustness
by a specialized loss that relies on classifiers that use local-
ized information [16].

3. The Effect of Occlusions on CNNs
Our first goal is to characterize the networks that are

more successful with respect to recognition under partial
occlusion. One example is a network trained on partially
occluded training examples, which is therefore more robust
to occlusions. Since CNNs are composed of linear filters,
they are greatly affected by occlusions. A linear filter that
sums values from all the objects’ regions responds very dif-
ferently when some of these values change significantly, as
is the case under occlusion. Therefore an occlusion-robust
classifier should use features that do not rely on the spa-
tial support of the entire object but only on part of it. We
are interested in the spatial support of the filters’ receptive
fields. Instead of using a strict definition of spatial support,
namely the set of locations associated with nonzero filter
weights, we prefer softer measures that take into considera-
tion the magnitude and location of the filter weights and are
referred to as effective spatial support; see Section 3.1.

To examine the change in effective spatial support, we
trained two CNNs. One was trained in the usual way, with
(unoccluded) images taken from the ImageNet data set [18].
The other was trained on both unoccluded and partially oc-
cluded images. We are interested in comparing the corre-
sponding filters across the two networks, and more specif-
ically the effective spatial support of their receptive fields.
To establish a correspondence between the filters from both
CNNs, we conducted a somewhat more complex experi-
ment; see Section 5.1 for details. As expected, we found
that networks trained with occluded examples are better
able to recognize partially occluded objects. We also found
that these networks are composed of filters with smaller spa-
tial support relative to filters in networks trained as usual.
Smaller spatial support means that more neurons would re-
spond independently of the occlusion; see Figure 2. We
argue that the smaller spatial support is indeed a major rea-



son for the advantage of the occlusion trained networks and
shall provide further evidence for this claim in Section 5.

In the rest of this section we elaborate on this finding,
suggest several measures for spatial support, and show em-
pirically that training with occluded examples indeed results
in filters of lower spatial support.

3.1. Measures of Spatial Support

We start by briefly describing the CNN structure we use,
and the associated notations. A CNN is typically composed
of several convolution layers, and then several fully con-
nected layers topped by a classifier. A convolution layer is
composed of K linear filters followed by nonlinearities and
optional pooling stages. Every filter is specified by a 3D
matrix of size D × M × N. We will use the tensor nota-
tion [7], with a 4D Wl tensor, where l represents the layer
number. A single element (i.e. a weight) of this tensor is
denoted Wl

kdmn, where k is the filter index, d is the filter
depth (or input channel), and m,n are the spatial indexes.

We shall be interested in the spatial distribution of the
weight values. Therefore, we focus on sub-filters of size
M × N, corresponding to common k, d values. These 2D
sub-filters are called kernels. We consider each kernel sepa-
rately, and characterize the distribution of its weight values
as described below. Then we get more concise characteriza-
tions by summing these measures over the different kernels
and the different filters in each layer.

The measures of spatial distribution should not depend
on the magnitude of the weights or on their signs. There-
fore, we use their normalized values. Formally, let Wl

kd::

be the 2D matrix of weight associated with the (k, d)-th
kernel. Then, the tensor V of the absolute value of the filter
weights and the tensor V̂ of the normalized filter weights
are specified by:

Vl
kd:: = |Wl

kd::|, V̂l
kd:: =

|Wl
kd::|

||Wl
kd::||1

. (1)

The resulting normalized weight kernels may be interpreted
as a (2D) probability distribution.

We shall use two alternative measures for characterizing
the spatial support of the filter weights.

Spatial entropy - Entropy, which is a measure of un-
certainty for random variables, may be applied to positive
vectors of unit L1 length as a diversity measure. We shall
use it here as a measure for the scattering of filter weights,
and refer to it as spatial entropy. Thus, the spatial entropy
HS of the (k, d)-th 2D kernel Wl

kd:: is:

(HS)
l
k,d = −

∑
m,n

V̂l
kdmnlog(V̂

l
kdmn). (2)

The entropy of the filter is the average of its kernel en-

tropies, weighted by the relative L1 energy:

(HS)
l
k =

D∑
d=1

H l
k,d ·
‖Wl

kd::‖1
‖Wl

k:::‖1
. (3)

(Other types of weighting could be used as well.) Note that
the entropy is indifferent to permutations of the weights,
and therefore it is only indicative of the spatial support. If
the entropy value is large, then the distribution is closer to
uniform and the support is large as well. When it is small,
however, it could correspond to two significant weights in
nearby locations (small spatial support) or to two significant
weights in far locations (large spatial support). We call this
spatial entropy because it refers to the scattering of weights
along spatial coordinates in the different kernels and not to
their scattering for different filters or depths.

Second central moment - Another measure that can be
used to estimate the scattering of the filter weights is the
second moment. Here, again, we begin by normalizing the
weights so that their sum is one. Then, following rigid body
mechanics, we calculate the center of mass and the second
moment relative to it. A filter with substantial weights far
from its center will have a large second central moment.

Consider a 2D discrete grid of masses {wmn}. The ij
moment is Mij =

∑
m,n wmnm

inj . Specifically, M00 is
the zeroth moment, which is simply the sum of the weights,
and M10,M01 are the first moments. The center of mass is
defined as (µx =M10/M00, µy =M01/M00). The second
central moments areCij =

∑
m,n wmn(m−µx)i(n−µy)j .

The latter moments (known as moments of inertia in me-
chanics) are common measures for the concentration of
mass.

We shall use the absolute and the normalized
weights specified in eq.(1), and treat these filter weights
as point masses. The moments and the associ-
ated centers of mass are calculated from the abso-
lute and normalized weights separately for each ker-
nel, and denoted (Mij)

l
kd, (µx)

l
kd, (µy)

l
kd, (Cij)

l
kd and

(̂Mij)
l

kd, (̂µx)
l

kd, (̂µy)
l

kd, (̂Cij)
l

kd respectively.
We use the sum of the two normalized second central

moments,

τ lkd = (̂C20)
l

kd + (̂C02)
l

kd, (4)

to characterize the effective spatial support of the kernel. To
characterize a filter, we shall take again a weighted sum of
this measure over all the kernels in the filter,

τ lk =

D∑
d=1

τ lkd ·
‖Wkd::‖1
‖Wk:::‖1

. (5)

In principle, we could normalize the filter weights, the cor-
responding moments, and the weights of the kernels in
eq.(5) differently, using, say, Euclidean norms. The results



are similar. We kept the L1 norm so that the same nor-
malization works for the spatial entropy. Interestingly, the
effective spatial support τ lk may be written in a simplified
way, using the unnormalized moments:

τ lk =
1

‖Wk:::‖1

D∑
d=1

[(C20)
l
kd + (C02)

l
kd]. (6)

See eq.(24) in the Appendix for details; This simplification
is used later in Section 4.

Compared to the entropy based measure, this measure,
based on central moments, is a more direct measure of the
concentration of the filter weights. It explicitly considers
the spatial location associated with the weights and calcu-
lates their distance from the center of mass. A large sec-
ond moment means that some non-negligible weights are
far from the center of mass, implying larger effective spa-
tial support. Therefore, we prefer this measure over the en-
tropy based measure, but shall use both of them below to
strengthen the evidence of the shrinking receptive fields.

3.2. The Effect of Occlusions on Spatial Support

We are interested in the change of effective spatial sup-
port caused by training the CNN on images of partially oc-
cluded objects. Training two CNN networks separately, one
on occluded objects and one on unoccluded objects, would
result in two sets of unrelated filters. To compare the spatial
support of specific filters, we need to maintain a correspon-
dence between pairs of filters, one from each network. To
maintain this correspondence, we conducted a more careful
experimental procedure, described in Section 5.1. This pro-
cedure produces two CNN networks with correspondence
between the filters. We calculated the spatial entropy (3)
and the second central moment (6) of every filter, as well as
the fraction of filters for which the measures were larger in
the network trained only with unoccluded examples; see Ta-
ble 1 and Table6 in the appendix. The results clearly show
that the spatial support tends to be smaller when training
with occluded examples. Note that the differences in spatial
support are actually very small. This is a result of the pro-
cedure we use and the price paid for maintaining the corre-
spondence; see Section 5.1 for more details and for related
results without filter correspondence.

As discussed above, filters with smaller support are less
likely to be influenced by partial occlusion than filters with
larger support. This seems to be the source of the prefer-
ence for smaller support filters observed when training on
occluded objects. Note, however, that filters with larger
support are more sensitive, in principle, to additional ob-
ject parts and details, and are therefore potentially more dis-
criminative. Still, the results indicate that the lower sensi-
tivity to occlusion is more significant than the decrease in
discriminative power.

conv layer 1 4 7 10 12

Fraction of filters in net A
with larger spatial entropy than 0.551 0.667 0.672 0.684 0.652
corresponding filters in net B.

Fraction of filters in net A with
larger 2nd central moments than 0.557 0.633 0.649 0.761 0.612
corresponding filters in net B.

Table 1: The fraction of filters in network A, (VGG16
trained only with unoccluded examples) that have a larger
effective support than the corresponding filters in network
B (trained also with occluded examples). The spatial sup-
port of the filters tends to be lower if the training images are
partially occluded; see appendix A for additional results.

3.3. The Effect of Occlusions on the Effective Depth

The filter spatial support is smaller when training on oc-
cluded object images. The influence of the different kernels
on the overall filter response is different as well. To mea-
sure the contribution of the various kernels to each filter, we
consider the energy of the kernel weights, ||Wl

kd::||22. The
normalized energy:

Slkd =
||Wl

kd::||22∑D
i=1 ||Wl

ki::||22
, (7)

serves as a measure of the contribution of every kernel to
the filter response. Note that the normalized energy values
sum to 1. The distribution of these contributions within a
filter may be estimated by the depth entropy HD, where the
subscript D stands for filter depth.

(HD)
l
k =

D∑
j=1

−Slkj · log(Slkj). (8)

This entropy can serve as an indication of the number of
kernels that significantly influence the filter response, and
we refer to it as effective depth. A filter that depends, for
example, on a single kernel, would correspond to zero en-
tropy and minimal effective depth, while a filter depending
on all kernels equally would correspond to logD entropy
and maximal effective depth.

In the same way that we calculated the change in the spa-
tial support, we now calculate the fraction of filters where
the depth entropy (8) was larger in the network that was
trained only with unoccluded examples, relative to the net-
work that was trained also with occluded examples. The
results (Table 2) indicate that the kernel energy in the net-
work trained also on occluded examples is distributed more
evenly, i.e., more kernels contribute to the response. This
larger effective depth may have two related but different ex-
planations. First, the network trained on partially occluded



conv layer 1 4 7 10 12

Fraction of filters in net A with
larger depth entropy than 0.432 0.271 0.368 0.244 0.268
corresponding filters in net B.

Table 2: The fraction of filters in network A, (VGG16
trained only with unoccluded examples) that have a larger
depth entropy than the corresponding filters in network B
(trained also with occluded examples). When training on
partially occluded examples, more kernels play a meaning-
ful role in the feature extraction process; see appendix A for
additional results.

examples uses a smaller part of the object to derive the in-
termediate pieces of evidence and therefore requires more
of them to be discriminative. In addition, because differ-
ent parts of the object may be occluded in different test im-
ages, the network should use alternative configurations of
features, which again increases the diversity of the kernels.

Interestingly, this effect is more significant for the deeper
layers; see Table 2. Neurons in these layers detect coarser
level features or full object parts. With training under oc-
clusion, they may be collecting alternative sets of evidence,
such as different subsets of the object’s parts.

4. Enforcing Small Spatial Support via Regu-
larization

As discussed in the introduction, and empirically verified
(Section 3), a straightforward way to improve classification
under occlusion conditions is to train the classifier using
partially occluded examples. We propose here an alterna-
tive approach: training the classifier on normal, unoccluded
examples, with bias to smaller spatial support filters. This
bias, which relies on the observation from the previous sec-
tion, is implemented by several special regularization terms.
Our motivation is two-fold:

1. Training on many combinations of object instances
and occlusions is computationally expensive and/or re-
quires detailed localization annotation; see Figures 5,3.
Therefore, an algorithm trainable only on unoccluded
object instances, but which still provides robustness to
occlusion, is desirable.

2. While we have shown that training on partially oc-
cluded examples reduces the filters’ spatial support,
we did not provide evidence that this reduction con-
tributes significantly to occlusion robustness. It could
be that other properties of the network, learned from
the occluded examples, provide this robustness and the
reduced spatial support is only a side effect. By show-
ing that a network trained only on unoccluded object

Figure 3: Different occlusion scenarios. When the object’s
location is not given (as is the case in ImageNet), creating
synthetic partial occlusions by placing an occluder in a ran-
dom location may be problematic. For example, the owl oc-
cluder, covering 10% of the full image may partially cover
the tractor target, completely cover it, or not cover it as all.

examples is robust to occlusion, we provide direct evi-
dence that small spatial support provides robustness.

4.1. Convolution layer regularization terms

We shall train CNNs composed of convolution layers and
fully connected layers. The training is carried out by mini-
mizing a loss function:

L = L0 +

L∑
l=1

λlRl, (9)

where L0 is the data loss function, λl are regularization
strength coefficients, which may differ for each layer, and
Rl is a regularization term for the l-th layer, which penal-
izes for large spatial support of the filters in this layer. We
shall consider several alternative regularization options.

4.1.1 Regularization by minimizing second central
moments

We first propose to use the second central moment of the
different convolution filters as a regularization term. Thus,
the regularization term Rl becomes:

RlCM =

K∑
k=1

τ lk. (10)

Following eq.(24), this term and its derivative become:

RlCM =

K∑
k=1

1

||wk:::||1

D∑
d=1

[(C20)
l
kd + (C02)

l
kd]. (11)

∂Rl
CM

∂Wl

kdij

=
[
sign(Wl

kdij)

||wk:::||1 − Wl

kdij

||wk:::||21

]
· [(i− (µx)

l
kd)

2 + (j − (µy)
l
kd)

2];

(12)

see appendix A. Note that the term
Wl

kdij

||wk:::||21
is negligible

in comparison to
sign(Wl

kdij)

||wk:::||1 , in each case where the filter



is not extremely sparse, which is a reasonable assumption.
This means that the sign of the derivative is determined only
by sign(Wl

kdij). The term 1
||wk:::||1 only changes the rela-

tive importance of the regularization term within the overall
loss function, and therefore may be replaced by changing
λl. Moreover, ||wk:::||1 changes very slowly in practice.
Thus, a simplified expression for the derivative, which we
use in the optimization, is:

∂RlCM
∂Wl

kdij

≈ sign(Wl
kdij)[(i− (µx)

l
kd)

2 + (j − (µy)
l
kd)

2].

(13)
This regularization term shrinks weights that are far from
the center of mass of each kernel.

4.1.2 Regularization by enforcing group sparsity

Another way to reduce the effective support of the kernels
is to shrink together specific filter weight subsets, chosen
to explicitly reduce the support, instead of shrinking each
filter weight independently using the usual L2 regulariza-
tion. We propose to use structured sparsity regularization,
and specifically group sparsity regularization (also known
as group Lasso [26]), used for sparse signal representation.
Sparsity with group regularization prefers not only that the
number of non-zero weights will be small, but also that
these weights will come from a minimal number of weight
subsets (or groups); see Figure 6 in Appendix A for an il-
lustration of the groups used in our experiments. The regu-
larization term Rl in this case is:

RlGS =
∑
k,d

∑
r

√∑
i,j

(Wl
kd::)

2. ∗Gr, (14)

where every Gr is an indicator matrix, the same dimension
as the kernel, which indicates whether the (i, j)-th weights
is a member of the group. The derivative of this term with
respect to Wl

kdij is:

∂RlGS
∂Wl

kdij

=
∑
r

Wl
kdijGr(i, j)√∑

m,n(W
l
kd::)

2. ∗Gr
. (15)

It is possible to shrink all the kernels using several sparsity
groups, using the same sparsity group, or using a different
group for each one. In our implementation we randomly
chose a single group for each kernel.

4.1.3 Regularization by mutually re-weighted L1

Finally, inspired by the results of [8], which showed that
promoting sparsity in the network weights increases net-
work invariance to various deformations, we suggest using a
variation of weighted L1 regularization. It is known that L1

regularization induces sparsity, while retaining the desired

Figure 4: Generating occluded examples. (Left) An occlud-
ing patch is acquired from a different object category using
intelligent scissors and is re-scaled to a certain occlusion
ratio, with respect to the target image. (Right) The target
image is occluded using the previously acquired occluder.

convexity attribute that the L0 norm lacks. Sparsity can
be achieved effectively using an iterative sequence of mini-
mizations, known as the iterative reweighted L1 minimiza-
tion (IRWL1) [1]. Each iteration minimizes a reweighted
L1 norm, where the weights used for the next iteration
are computed from the value of the current solution. We
propose to use a variation of this algorithm. The original
reweighting scheme uses the size of each entry to calculate
the weight of this entry (in the next iteration) while we use
the other entries of the vector to calculate this weight in the
next iteration. In the context of CNN kernels, for a partic-
ular filter weight X in some kernel, we use the other filter
weights in the same kernel to calculate the weight of X .
We call this algorithm Mutually Re-WeightedL1 (MRWL1)
and specify the corresponding regularization term:

RlMRWL1 =
∑
k,d

∑
i,j

|Wl
kdij |·

∑
m 6=i,n6=j

|Wl
kdmn|. (16)

In comparison to L1 regularization, where the weights
shrink at the same rate, MRWL1 constantly changes the
shrinking rate for each weight, with respect to its spatial
neighbors. MRWL1 tends to shrink smaller weights more
rapidly then larger weights, effectively promoting sparsity.
The derivative of RlMRWL1 with respect to Wl

kdij is:

∂RlMRWL1

∂Wl
kdij

= sign(Wl
kdij) ·

∑
m 6=i,n 6=j

|Wl
kdmn|. (17)

Note that the weight
∑
m6=i,n 6=j |W

l
kdmn| has a similar ef-

fect as the weight 1/(|Wl
kdmn|+ε), which would be used if

we followed the reweighting proposed in [1], provided that
the sum (or norm) of the weights in the kernel is constant.

4.2. Fully connected layer regularization

The first fully connected layer is the deepest layer in the
CNN for which the spatial information of the input is ex-
plicit. The output of this layer lacks any direct spatial in-
formation that can be traced back to the input location of
the pixels. Following the discussion in Section 3, we argue



that recognition of partially occluded objects would benefit
from shrinking the filters’ support. The same regularization
terms, proposed in Section 4.1 for the convolution filters,
can also be used for the optimization of the first fully con-
nected layer weights, while promoting smaller support and
sparsity; see Section 5 for experimental results.

4.3. The learning algorithm

The regularization terms presented above are indepen-
dent with respect to the different kernels, implying that
training using the stochastic gradient descent algorithm is
efficient. Algorithm 1 describes the SGD training process.
The algorithm depends, via a parameter R, on one of the
regularization terms,(10),(14) or (16), and uses the associ-
ated derivative (13),(15) or (17). The algorithm’s other pa-
rameters are the learning rate function γt, the batch size B,
and the regularization strength coefficients {λl}Ll=1. Addi-
tional learning techniques such as momentum, L2 regular-
ization and batch normalization, may be incorporated.

Algorithm 1 Small support regularized SGD
1: Input: training set D = {x1:N , y1:N},R,B,γt, {λl}Ll=1

2: winit ← N(0, σ),winit ∈ RLK×D×M×N
3: while (epoch ≤ numberofepochs) do
4: for n = 1...BatchNumber do
5: wn ← wn−1 − γt

B

∑B
b=1[

∂L0(xb)
∂w + λl ∂R(xb)

∂w ]
6: end for
7: epoch← epoch+ 1
8: end while
9: return w

5. Experiments and Results

We start by describing experiments that demonstrate the
influence of training under occlusion on the properties of the
network, as discussed in Section 3. We then turn to evalu-
ating the categorization accuracy of algorithms that use the
proposed specialized regularization. We use three popular
datasets: CIFAR-10/CIFAR100 [11], and ImageNet [18].

Since, to our knowledge, there is no large scale data set
that contains occlusion annotations, we generated and used
several types of artificial occlusions. The occluders were
crops from image of other categories obtained by running
the intelligent scissors [15] in random locations. We also
experimented with random rectangles and got similar re-
sults. The occluders’ sizes were characterized by the ratio δ
between their sizes and the entire image. Note that δ = 0.1
may correspond to a square occluder whose sides equal 0.32
of the full image—not a small image part. All experiments
were done using the MatConvNet toolbox [24].

5.1. Training with partially occluded examples

In the following, we elaborate on the experimental set-
tings used for obtaining the results in Section 3, and show
additional results. To evaluate the effect of training with
partially occluded examples on the spatial support of the
filters, we conducted two types of experiments.

In the first type, we trained 2 CNN networks as follows.
Our goal here was to maintain a correspondence between
the filters of the two networks. Thus, we first trained both
networks identically for 15 epochs on unoccluded examples
(from ImageNet [18]). We then continued the training for 5
epochs, with a learning rate that was 100 times smaller than
that used in the first 15 epochs. For these last five epochs,
the first network was trained on unoccluded examples but
the second network was trained on partially occluded ex-
amples. In the resulting networks, the corresponding filters
are not identical but essentially extracted features with the
same functionality. A comparison between the properties
of these filters is described in Section 3. We experimented
with AlexNet [12], and VGG16 [19], both with batch nor-
malization [10].

In the experiments of the second type, we trained the
two CNNs separately, one on unoccluded examples and the
other on occluded examples only. Here, correspondence be-
tween filters is not known (or does not exist), so comparing
specific filters is meaningless. Thus, we only compared the
average of the effective spatial support, over all filters in the
same layer; see Table 8 in Appendix A. These results fur-
ther confirm our findings regarding the smaller filter support
caused by training on occluded objects.

5.2. Regularization for occlusion robustness

5.2.1 The CIFAR Datasets

The CIFAR-10/CIFAR100 datasets [11] are both drawn
from 80 Million Tiny Images [22]. They both contain 50K
training examples and 10K test examples, all of which are
32×32 RGB. CIFAR10 consists of 10 distinct classes while
CIFAR100 consists of 100. Both training and test data are
distributed uniformly in both datasets. We evaluated the
recognition accuracy under partial occlusion by training a
LeNet [14] CNN with different choices of the proposed reg-
ularization terms; see Table 3.

When training on unoccluded object examples, with-
out regularization, the error associated with classifying oc-
cluded objects (2nd line in Table 3) is much higher than that
associated with classifying unoccluded objects (top line).
As expected, when training on occluded object examples,
the error associated with classifying partially occluded ob-
jects decreases (3rd line). The proposed classifiers, when
trained on normal (unoccluded examples), reduced the clas-
sification error on occluded objects as well, regardless of the
choice of regularization term. This improvement came, as



LeNet-CIFAR10 LeNet-CIFAR100
δ = 0.1 δ = 0.2 δ = 0.1 δ = 0.2

ut+uv 18.97 51.55

ut+ov 27.31 40.03 60.17 72.17
ot+ov 22.89 27.71 56.43 60.34
RCM conv 23.47 34.90 56.78 68.11
RCM conv+fc 23.00 34.30 56.22 67.16
RGS conv 24.20 36.70 58.74 70.01
RGS conv+fc 23.72 36.09 56.21 69.22
RMRWL1 conv 25.05 35.51 58.68 69.21
RMRWL1 conv+fc 24.45 35.33 59.78 69.17
RL1 conv+fc 27.52 39.93 60.10 72.31
RIRWL1[1] conv+fc 26.45 38.78 58.71 70.11

Table 3: Recognition error rates (%) on the CIFAR10 and
CIFAR100 datasets. ut: unoccluded train. uv: unoccluded
val. ot: occluded train. ov: occluded val. δ: occlusion ratio.

expected, with smaller filter support. Adding a regulariza-
tion term on the first fully connected (FC) layer further im-
proves classification results, in most cases. For comparison
we also experimented with L1 and IRWL1 regularizations.

For CIFAR10, training with occluded examples yielded
better accuracy than our regularization based approach, al-
though, for moderate occlusion (δ = 0.1), the difference
is small (for Rcm regularization). For CIFAR100, the reg-
ularization based approach achieved slightly better results.
We associated the difference between these two cases with
the smaller number of examples (500 vs 5K) per class in the
second case, which is probably not enough for training.

For best performance on occluded objects, λ is set to
a relatively high value (see supp. material). When tested
on un-occluded objects, with this λ value, performance is
slightly reduced. (The error rate increases by ADD.) In-
terestingly, when setting λ optimally for recognizing un-
occluded objects, the results are better than those obtained
with L2 regularization. (The error rate goes down to
ADD.) Therefore it seems that central moments regulariza-
tion should be the preferred regularization also for general
categorization. This surprising result is consistent with []
where similar improvement was obtained by training with
occlusions.

5.2.2 The ImageNet Dataset

The picture changes when experimenting with the
ILSVRC2012 classification task, which is a subset of the
ImageNet database [3]. We used AlexNet and VGG16
topologies [12, 19], with batch normalization [10]. We
experimented with training several CNNs. The first was
trained on unoccluded object examples and tested on both
unoccluded and occluded validation sets (δ = 0.1). Next
we trained a network with partially occluded object exam-
ples, also with a δ = 0.1 occlusion ratio, and tested it on the

ILSVRC12 top-5\top-1 AlexNet top-5\top-1 VGG16

ut+uv 19.3\41.1 9.5\28.3

ut+ov 26.2\50.6 23.7\37.5
ot+ov 25.2\48.5 16.9\35.9
Support regularized net 25.0\48.1 13.3\33.6

Table 4: Recognition error rates (%) on the ILSVRC12
dataset for AlexNet and VGG16. ut: unoccluded train. uv:
unoccluded val. ot: occluded train. ov: occluded val. The
last three rows correspond to testing of occluded objects.

Figure 5: VGG16 convergence graph of support-
regularized network vs. the common network trained on
occluded examples. The regularized network converged 4
times faster.

corresponding occluded validation set. Finally, we trained
a network with different regularization terms. For AlexNet,
RCM regularization was used on the first and second con-
volution layers as well as on the first fully connected layer
andRMRWL1 was used on the third, fourth and fifth convo-
lution layers. For VGG16 we used RCM on the first layer
of each cascade. Reducing the support of the first element
in the cascade results in support reduction of the entire cas-
cade. The results are given in Table 4. The regularized VGG
network achieved a significant advantage over training on
occluded examples, and its validation accuracy was close
to that obtained without occlusion at all. We associate this
advantage with the smaller size of the objects in ImageNet,
which implies that the simulated occluder might eliminate
the object completely, or not even intersect with it; see Fig-
ure 3. This makes training with occluded examples less ef-
fective, prolonging training significantly; see Figure5.

6. Conclusions

In this paper, we considered visual classification under
occlusion using CNNs. We show that training with partially
occluded objects reduces the spatial support of the CNN fil-
ters and increase their effective depth. Following these ob-
servations, we propose a new learning algorithm that relies
on special regularization and trains with regular unoccluded
examples, while still producing a classifier that is robust



to occlusions. In the realistic case of large train sets with
weakly annotated images, this algorithm trains faster and is
more accurate than simply training with occluded objects.
This result is, in fact, surprising, because limiting spatial
support does not address all aspects of occlusion.
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A. Supplementary Material

A.1. Second central moment regularization deriva-
tive

In the following we provide the full derivation of the sec-
ond central moment regularization term, RCM , that was in-
troduced in (12). We consider the absolute value of the filter
weights, normalized by the L1 norm of the entire filter (note
that it differs from V̂ (1)):

Ṽ
l

kd:: =
|Wl

kd::|
||Wl

k:::||1
. (18)

Let RlCM = (RlCM )x + (RlCM )y , where (RlCM )x and
(RlCM )y correspond to the horizontal second central mo-
ment C20 and the vertical second central moment C02, re-
spectively. Below we calculate the derivative of (RlCM )x.
The derivative of (RlCM )y is symmetric.

The derivative of (RlCM )x with respect to a specific filter
weight is obtained using the chain rule:
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The explicit term for (RlCM )x is:
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This term can now be written using the moments M̃20,
M̃10 and M̃00 (which are the moments in the Ṽ

l

kdmn val-
ues). Calculating the first element of the derivative, with
respect to Ṽ

l

kdij yields:
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Note that (µ̃x)lkd = (µx)
l
kd. Deriving the second term of

(19) yields:

∂Ṽ
l

kdij

∂Wl
kdij

=
∂

∂Wl
kdij

|Wl
kdij |

||Wl
k:::||1

=

=
[sign(Wl

kdij)

||wk:::||1
−

Wl
kdij

||wk:::||21

]
.

(22)

To sum up, the complete term for the derivative, with
respect to a single filter weight Wl

kdij takes the form of:

∂Rl
CM
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(23)

A.2. Simplifying the expression for the effective spa-
tial support of a filter

In the following we provide further details regarding the
simplification made in Section 3 eq.(4)-(5) in order to ob-
tain the simplified term in eq.(6), which is used to calculate
the second central moment of a filter. This simplification
allowed us to calculate (C20)

l
kd and (C02)

l
kd using the ab-

solute valued weights, instead of the normalized weights as

in (̂C20)
l

kd and (̂C02)
l

kd. Substituting eq.(4) into (5) yield
the following:
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(24)

Hence, using the unnormalized second moments is
equivalent up to 1

‖Wk:::‖1
, which is shown in eq.(6).



A.3. Additional results supporting the observation
that training with occluded examples lowers
the spatial supports of the filters and increases
their effective depths

In the following, we provide further, more detailed re-
sults regarding the experiments presented in section 3 and
section 5. First we provide the complete results of second
central moment and spatial entropy for two VGG16 net-
works, where the first trained with unoccluded examples,
and the second is based on the first, but is trained on oc-
cluded examples near the end of the training process; see
Sections 3 and 5, for details. The following table completes
the results in Table 1, Section 3.2:

Fraction of filters in net A with Fraction of filters in net A with
larger spatial entropy than larger 2nd central moments than

corresponding filters in net B corresponding filters in net B

conv 1 0.551 0.577
conv 2 0.616 0.591
conv 3 0.721 0.611
conv 4 0.667 0.633
conv 5 0.583 0.591
conv 6 0.599 0.701
conv 7 0.672 0.649
conv 8 0.691 0.652
conv 9 0.686 0.599
conv 10 0.684 0.761
conv 11 0.613 0.658
conv 12 0.652 0.612
conv 13 0.634 0.634

Table 5: The fraction of filters in network A, (VGG16
trained only with unoccluded examples) that has a larger
effective support than the corresponding filters in network
B (trained also with occluded examples). The spatial sup-
port of the filters tends to be lower if the training images are
partially occluded.

Next we provide the complete results of the same exper-
iment for networks based on AlexNet topology:

conv layer 1 2 3 4 5

Fraction of filters in net A
with larger spatial entropy than 0.641 0.582 0.675 0.597 0.596
corresponding filters in net B.

Fraction of filters in net A with
larger 2nd central moments than 0.572 0.585 0.675 0.722 0.634
corresponding filters in net B.

Table 6: The fraction of filters in network A, (AlexNet
trained only with unoccluded examples) that has a larger
effective support than the corresponding filters in network
B (trained also with occluded examples). The spatial sup-
port of the filters tends to be lower if the training images are
partially occluded.

In the following table we present the effective depth for
the same experiment for networks based on AlexNet topol-
ogy; see Section 3.3, Table 2:

conv layer 1 2 3 4 5

Fraction of filters in net A with
larger depth entropy than 0.448 0.293 0.361 0.254 0.275
corresponding filters in net B.

Table 7: The fraction of filters in network A, (AlexNet
trained only with unoccluded examples) that has a larger
depth entropy than the corresponding filters in network B
(trained also with occluded examples). When training on
partially occluded examples, more kernels play a meaning-
ful role in the feature extraction process; see appendix A for
additional results.

As mentioned in Section 3.2, in the experiments pre-
sented above, the differences in spatial support are quite
small. This is a result of the experimental settings, meant to
maintain correspondence between the filters of the two net-
work. We also carried out a different experiment, where we
trained two AlexNet networks. The first was trained only on
unoccluded examples, while the second was trained only on
occluded examples. In this setting, there is no filter corre-
spondence between the two networks. The following table
presents the means and the standard deviations of the 2nd
central moments in these networks. The results show that
the spatial support is indeed lower when training with oc-
cluded examples. The difference is larger and statistically
significant in the later layers.

conv layer 1 2 3 4 5

(µ,σ) for non occ 5.99,3.12 3.31,0.19 1.13,0.03 1.181,0.032 1.20,0.03

(µ,σ) for occ 5.65,2.71 3.21,0.33 1.01,0.01 1.147,0.001 1.13,0.002

Table 8: A comparison of the mean and standard devia-
tions of the second central moment between two AlexNet
networks. The first trained on unoccluded examples while
the second trained only on partially occluded training ex-
amples. The comparison is presented with respect to the
different convolution layers. The spatial support is smaller
if the training process is conducted on occluded examples.



A.4. The group sparsity masks used in the experi-
ments.

In the following figure, we present an example of the
group sparsity masks used with the LeNet network which
trained with the CIFAR data sets experiments described in
Section 5:

Figure 6: Group sparsity masks, similar to those used in our
experiments. White represents unaffected weights, while
blue represents the group of weights meant to decay to-
gether.

A.5. A note on setting the regularization strength.

Using substantial experimentation (on LeNet5), we came
to the conclusion that latter layers in the CNN benefit from
largerer regularization strength values (λ). The results cited
in table ?? were obtained with λ = 0.0005 for the first two
layers and for larger λ = 0.005 for the last layers.

The following figures shows the error rate depen-
dence on the regularization strength (for occluded and un-
occluded objects, and for two regularization terms.


