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Abstract. Matching keypoints by minimizing the Euclidean distance
between their SIFT descriptors is an effective and extremely popular
technique. Using the ratio between distances, as suggested by Lowe, is
even more effective and leads to excellent matching accuracy. Probabilis-
tic approaches that model the distribution of the distances were found
effective as well. This work focuses, for the first time, on analyzing Lowe’s
ratio criterion using a probabilistic approach. We provide two alterna-
tive interpretations of this criterion, which show that it is not only an
effective heuristic but can also be formally justified. The first interpre-
tation shows that Lowe’s ratio corresponds to a conditional probability
that the match is incorrect. The second shows that the ratio corresponds
to the Markov bound on this probability. The interpretations make it
possible to slightly increase the effectiveness of the ratio criterion, and
to obtain matching performance that exceeds all previous (non-learning
based) results.
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1 Introduction

Matching objects in different images is a fundamental task in computer vision,
with applications in object recognition, panorama stitching, and many more.
The common practice is to extract a set of distinctive keypoints from each im-
age, compute a descriptor for each keypoint, and then match the keypoints
using a similarity measure between the descriptors and possibly also geomet-
ric constraints. Many methods for detecting the keypoints and computing their
descriptors have been proposed. See the reviews [23, 11, 25].

The scale invariant feature transform (SIFT) suggested by Lowe [8, 9] is ar-
guably the dominant algorithm for both keypoint detection and keypoint descrip-
tion. It specifies feature points and corresponding neighborhoods as maxima in
the scale space of the DoG operator. The descriptor itself is a set of histograms
of gradient directions calculated in several (16) regions in this neighborhood,
concatenated into a 128-dimensional vector. Various normalizations and several
filtering stages help to optimize the descriptor. The combination of scale space,
gradient direction, and histograms makes the SIFT descriptor robust to scale, ro-
tation, and illumination changes, and yet discriminative. Keypoints are matched



2 Avi Kaplan, Tamar Avraham, Michael Lindenbaum

by minimizing the Euclidean distance between their SIFT descriptors. However,
to rank the matches, it is much more effective to use the distance ratios:

ratio(ai,bj(i)) =
‖ai − bj(i)‖2
‖ai − bj′(i)‖2

(1)

and not the distances themselves [8, 9]. Here, ai denotes a descriptor in one im-
age, and bj(i),bj′(i) correspond to the closest and the second-closest descriptors
in the other image.

SIFT has been challenged by many competing descriptors. The variations try
to achieve faster runtime (e.g. SURF [2]), robustness to affine transformation
(ASIFT [14]), compatibility with color images (CSIFT [1]) or simply represent
the neighborhood in a different but related way (PCA-SIFT [7] and GLOH [11]).
Performance evaluations [11, 13, 12, 22] conclude, however, that while various
SIFT alternatives may be more accurate under some conditions, the original
SIFT generally performs as accurately as the best competing algorithms, and
better than the speeded-up versions.

SIFT descriptors are matched based of their dissimilarity, which makes the
choice of dissimilarity measure important. The Euclidean distance (L2) [9] is still
the most commonly used. Being concatenations of orientation histograms, SIFT
descriptors can naturally and effectively be compared using measures for com-
paring distributions, such as χ2 distance [28] and circular variants of the Earth
mover’s distance. Alternative, probabilistic approaches consider the dissimilari-
ties as random variables. In [10], for instance, the dissimilarities are modeled as
Gaussian random variables. The probabilistic a contrario theory, which we fol-
low in this work, was effectively applied to matching SIFT-like descriptors [21]
(as well as many other computer vision tasks [4]).

This work focuses, for the first time, on using a probabilistic approach for an-
alyzing the ratio criterion. We show that this effective yet nonetheless heuristic
criterion may be justified by two alternative interpretations. One shows that the
ratio corresponds to a conditional probability that the match is incorrect. The
second shows that the ratio corresponds to the Markov bound on this probability.
These interpretations hold for every available distribution of dissimilarities be-
tween unrelated descriptors, and in particular, for all the distributions suggested
later in this paper.

We also consider several dissimilarity measures, including, unusually, a multi-
value (vector) one. The distributions of the dissimilarities, corresponding to in-
correct matches, are constructed by partitioning the descriptor into parts (fol-
lowing [21]), estimating a rough distribution of the dissimilarities between the
corresponding parts, and combining the distributions of the partial dissimilar-
ities into a distribution of the full dissimilarity. These distributions, denoted
as background models (as in [4]), are estimated, online, only from the matched
images, requiring no training phase and making them image adaptive.

Combining these estimated distributions with the conditional probability
(the first probabilistic interpretation of the ratio criterion) provides a new cri-
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terion, or algorithm, for ranking matches. With this algorithm, we obtain state-
of-the-art matching accuracy (for non-learning methods)1.

In this paper, we make the following contributions:

1. A mathematical explanation of the ratio criterion as a conditional probabil-
ity, which justifies this effective and popular criterion.

2. A second justification of the ratio criterion using the Markov inequality.
3. New measures of dissimilarity and methods for deriving their distribution.
4. A new matching criterion combining the estimated dissimilarity distribu-

tion with the conditional probability interpretation, which obtains excellent
results.

Outline: Sec. 2 shows how to use dissimilarity distributions to rank matching
hypotheses and, in particular, to justify the ratio criterion as a conditional distri-
bution. Sec. 3 describes various dissimilarities and the corresponding partition-
based background model distributions and summarizes the proposed matching
process. Sec. 4 provides an additional justification of the ratio criterion. Exper-
imental results are described in Sec. 5, and Sec. 6 concludes.

2 Using a background model for matching

2.1 Modeling with background models

We would like to generate a set of reliable matches between the feature points
of two images A and B, using their corresponding sets of SIFT descriptors,
A = {ai} and B = {bj}. Let ai ∈ A be a specific feature point and let ai ∈ A
be its corresponding descriptor. Most descriptors in B (all except possibly one)
are unrelated to ai in the sense of not corresponding to the same scene point.
Our goal is to find the single feature point, if it exists, which matches ai.

The proposed matching process is based on statistical principles. We model
the non-matching descriptors in B as realizations of a random variable X drawn
from some distribution. This distribution is high-dimensional and complex, and
we refrain from working with it directly. Instead we consider associated dissimi-
larity values. Let δ(u,v) be some dissimilarity measure between two descriptors
u and v. We shall be interested in the dissimilarities δ(ai,bj) between the de-
scriptors in A and in B. We consider ai to be a specific fixed descriptor, and
bj to be drawn from the distribution of X. Then, the associated dissimilarity
δ(ai,bj) is an instance of another random variable, which we denote Yai . Yai

is distributed by FYai (y), representing the dissimilarity distribution associated
with ai and non-matches to it. Following the a contrario approach, we denote
this distribution a background model. Note that the dissimilarities associated
with different descriptors in A follow different background models.

1 Recently, learned patch descriptors were introduced as alternatives to SIFT (e.g. [6,
27]). We do not compete with their performance, as the focus in this work is to
suggest and validate our new explanation to the ratio criterion
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In this section we assume that this distribution is known. In Sec. 3 we consider
several dissimilarity measures as well as methods for estimating the correspond-
ing background models. As usual, we consider a scalar dissimilarity. Later, we
show that an extension to multi-value (vector) dissimilarity is beneficial.

Given a matching hypothesis by which the two descriptors, (ai,bj) corre-
spond to the same 3D point, we contrast this hypothesis with the alternative,
null hypothesis, by which the descriptor bj is drawn from a distribution of false
matches. This is a false correspondence, or false alarm event, and we denote its
probability (following a contrario notations [3]), as the probability of false alarm
(PFA). The null background model hypothesis is rejected more strongly if the
PFA is lower, and therefore matching hypotheses with lower PFA are preferred.
This approach is further developed in the rest of this section.

The PFA replaces the commonly used distance between descriptors with
a probabilistic measure. This new matching criterion is mathematically well
defined, quantitatively and intuitively meaningful, and possibly image adaptive.

2.2 Ranking hypothesized matches by PFA

Let (ai,bj) be a hypothesized match. To evaluate the null hypothesis we cal-
culate the probability of drawing, from the background model, a value that is
as extreme (small) as the dissimilarity of the hypothesized match, δ(ai,bj). Let
Eai

1−1(d) denote the event that the value drawn from the distribution of Yai is
smaller or equal to d. Then,

PFA1−1(ai,bj) = Pr
(
Eai

1−1(δ(ai,bj))
)

= FYai (δ(ai,bj)). (2)

Thus, PFA1−1 is just the one-sided (lower) tail probability of the distribu-
tion. A hypothesized match is ranked higher if its PFA1−1 is lower, which enables
us to reject the null hypothesis with higher confidence. We use this ranking to
specify the feature point (and the descriptor) in the image B, corresponding to
ai:

bj(i) = arg minbj∈B PFA1−1(ai,bj). (3)

Thus, for every ai ∈ A we get a single preferred match (ai,bj(i)), denoted
selected match2. Next, we would like to rank these selected matches. To that
end, we may use, again, PFA1−1(ai,bj(i)), as explained in the next section.
Further below (Sec. 2.4), we propose another, more reliable PFA expression.

2.3 Ranking selected matches as complex events

The selected match, (ai,bj(i)), is a false alarm event when at least one of the
|B| random, independently drawn, dissimilarity Yai values is as extreme as

2 One might think that ranking by the PFA1−1 is equivalent to ranking by the dis-
similarity measure itself. This is true in the simpler case when the dissimilarity is
scalar and the distribution depends directly on this scalar, but not in more complex
cases, as we shall see in Sec. 3.
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δ(ai,bj(i)). This is a complex event, denoted Eai

1−|B|(δ(ai,bj(i))). Its probability

may be calculated as the binomial distribution

PFA1−|B|(ai,bj(i)) = 1−
(
1− PFA1−1(δ(ai,bj(i)))

)|B|
. (4)

As observed in our experiments, the typical values of PFA1−1(δ(ai,bj(i))) are
small, and usually much smaller than 1/|B|. Under this condition,

PFA1−|B|(ai,bj(i)) ≈ |B| · FYai (δ(ai,bj(i))). (5)

We may use this approximation for ranking the selected matches. Note that
ranking by PFA1−1 is equivalent. We shall also use this approximation below
for deriving a more effective, conditional, PFA.

2.4 Ranking selected matches by conditional PFA

Indirect evidence about the dissimilarity values drawn from the background
model may improve the estimate of the PFA. Such evidence may be available
from small dissimilarity values in {δ(ai,bj)|j 6= j(i)}. These dissimilarities do
not correspond to correct matches and come only from the background model.
Consider the complex event associated with the second lowest dissimilarity, de-
noted δ(ai,bj′(i)). Knowing that the event Eai

1−|B|(δ(ai,bj′(i))) occurred allows

us to recalculate the probability that the event Eai

1−|B|(δ(ai,bj(i))) occurred as

well, as a conditional probability:

PFAC(ai,bj(i)) = Pr
(
Eai

1−|B|(δ(ai,bj(i)))
∣∣Eai

1−|B|(δ(ai,bj′(i)))
)

=
Pr
(
Eai

1−|B|(δ(ai,bj(i))) ∩ Eai

1−|B|(δ(ai,bj′(i)))
)

Pr
(
Eai

1−|B|(δ(ai,bj′(i)))
)

≤
Pr
(
Eai

1−|B|(δ(ai,bj(i)))
)

Pr
(
Eai

1−|B|(δ(ai,bj′(i)))
) ≈ |B| · FYai (δ(ai,bj(i)))

|B| · FYai (δ(ai,bj′(i)))
. (6)

For scalar dissimilarities, the event Eai

1−|B|(δ(ai,bj(i))) is included in the event

Eai

1−|B|(δ(ai,bj′(i))), and the inequality above is actually an equality. For vector

dissimilarities (Sec 3.2) the equality does not strictly hold. We shall use the
approximation to the bound as an estimate for PFAC ,

PFAC(ai,bj(i)) ≈
FYai (δ(ai,bj(i)))

FYai (δ(ai,bj′(i)))
, (7)

and prefer matches with lower PFAC .
The expression (7) is reminiscent of the ratio of distances (Eq. 1) used by

Lowe in the original SIFT paper [9]. We argue, moreover, that the derivation in
Sec. 2 mathematically generalizes and justifies the two criteria suggested in [9].
First, (incorrectly) assuming a uniform distribution of the Euclidean distance dis-
similarity makes the PFA1−1 expression proportional to the Euclidean distance.
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Thus, minimizing PFA, as suggested here, is exactly equivalent to minimizing
the Euclidean distance (as in [9]). Furthermore, with the uniform distribution as-
sumption, the conditional PFAC expression (Eq. 7) is simply the distance ratio
(Eq. 1). As we show later, replacing the incorrect uniform distribution assump-
tion with a more realistic distribution further improves the matching accuracy.

3 Partition-based dissimilarities and background models

3.1 Standard estimation of dissimilarity distribution

The various PFA expressions developed in Sec. 2 are valid for any available
distribution. To convert these general expressions into a concrete algorithm,
we consider several dissimilarity measures, and derive their distributions. We
first consider the standard nonparametric distribution estimation method. Then,
following the a contrario framework, we suggest partition-based methods that
overcome some limitations of the standard method.

We may estimate the background distribution from different sources of data;
each has pros and cons. One option uses an offline external database F containing
many non-matching descriptor pairs, (u,v), unrelated to A,B. The distribution,
F(y) = Pr(δ(u,v) ≤ y), may be estimated using the formal definition of the
empirical distribution function: F̂(y) =

∣∣{(u,v) ∈ F : δ(u,v) ≤ y}
∣∣/|F| or more

advanced methods, such as kernel density estimation; see [24]. The second option,
which is image adapted and denoted internal, is to estimate the distribution
from all pairs (ai,bj) related to the specific image. The third option, which is
also online, but point adapted, is to estimate the distribution using only F =
{(ai,bj) : bj ∈ B}, separately for every descriptor ai in A. While more data
is available for the two first options, the last option is the one that fits our
task. Since B is relatively small and may contain the descriptor corresponding
to the correct match to ai, more creative methods should be used to estimate
the point-adapted distribution. Standard techniques would lead to a coarsely
estimated distribution, which is a staircase function with steps of size 1/|B|,
and PFA1−1(ai,bj(i)) will always be 1/|B|, regardless of whether the match is
correct, which would mean that it is useless for matching. The partition-based
approach described below adopts the last option but avoids its problems.

3.2 Partition-based dissimilarities

The partition-based approach divides the descriptor vector intoK non-overlapping
parts: u =

(
u[1], . . . ,u[K]

)
, and calculates the dissimilarity between two (full)

descriptors from the dissimilarities between the corresponding parts. Here, we
describe the partition and the dissimilarities. In Sec 3.3 we show how to use this
partitioning to estimate the desired distribution. Then we explain why it avoids
the problems of the standard approach.

To specify the partition-based dissimilarity, we need to make three choices:
how to partition the descriptor, how to measure partial dissimilarities, and how
to combine them into the final dissimilarity.
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The partitioning - The descriptors may be partitioned in many ways, some
of which are more practical and statistically consistent with the independence
assumption (made in Sec. 3.3). We tried several finer and coarser options, and
ended up with the natural partition of the SIFT vector to its 16 orientation
histograms, which gave the best results.
Basis distance - The dissimilarity between parts is denoted d(u[j],v[j]), and,
to distinguish it from the dissimilarity of the full descriptors, is called a basis
distance. It may be the L2 metric but may also be some other metric (e.g. L1)
or even a dissimilarity measure which is not a metric (e.g. EMD). In Sec 5, we
experiment with the L2 distance and two versions of the EMD [21, 19].
Dissimilarity measure - There are many ways to combine the part dissimi-
larities, and we consider three of them:

1. Sum dissimilarity - The dissimilarity between two full descriptors, already
used and analyzed in [21], is the sum of the basis distances:

δsum(u,v) = ΣK
j=1d(u[j],v[j]). (8)

2. Max-value dissimilarity - The dissimilarity between the full descriptors,
already used for a contrario analysis of shape recognition ([17, 15]), is the
the maximal basis distance.

δmax(u,v) = max
j
d(u[j],v[j]). (9)

3. Multi-value dissimilarity - Instead of summarizing all the basis distances
associated with the parts with one scalar, we may keep them separate. Then
the dissimilarity measure is a vector of K basis distances. This richer, vec-
torial, dissimilarity has the potential to exploit the non-uniformity in the
descriptor’s parts and to be more robust.

δ̄multi(u,v) = (d(u[1],v[1]), d(u[2],v[2]), . . . , d(u[K],v[K]))T . (10)

This dissimilarity, being a vector, induces only a partial order. We follow
the standard definition and say that one dissimilarity vector is smaller (not
larger) than another if each of its components is smaller (not larger) than
the corresponding component of the second, or

ȳ1 ≤ ȳ2 ⇐⇒ ∀j, (ȳ1)j ≤ (ȳ2)j . (11)

Note that this partial order suffices for defining a distribution because, for
every vector ȳ, the set of all vectors not larger than ȳ is well defined.

For brevity, we use δ(u,v) as a general notation that, depending on context,
may refer to the different types of dissimilarity defined above, and to different
basis distances d( ). Note that δ(u,v) may take a vector value. Therefore, we
refrain from referring to it as a distance function.

Not all dissimilarities may be represented using the partition-based schemes.
Euclidean distance is one example. Note, however, that squared Euclidean dis-
tance is representable as a sum of basis distances, and as it is monotonic in the
Euclidean distance, they are equivalent with respect to ranking.
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3.3 Estimating the background models

Different background models are constructed for the three types of partition-
based dissimilarities discussed above. Let Yai [1],Yai [2], . . . ,Yai [K] be the K
random variables corresponding to the K basis distances between the parts of a
specific descriptor ai and a randomly drawn descriptor from B.

The background models are estimated using the assumption that the set

of random variables
{
Yai [j]

}K
j=1

, associated with unrelated sub-descriptors, is

mutually statistically independent. For SIFT descriptors, this assumption is not
completely justified due to the correlation between nearby image regions and
because of the common normalization. Yet it seems to be a valid and common
approximation. Later we comment on the validity of this assumption, test it
empirically, and discuss a model which avoids it.
The background model for multi-value dissimilarity is characterized by
the distribution Fmulti

Yai (ȳ). Here Yai is specified by the partition-based multi-
value dissimilarity and is a vector variable. To specify its distribution, we use
the partial order between these vectors specified in Eq. (11). Then,

Fmulti
Yai (ȳ) = Pr

( K⋂
j=1

{
Y[j] ≤ (ȳ)j

})
. (12)

Using the independence assumption, we get

Fmulti
Yai (ȳ) =

K∏
j=1

Pr
(
Y[j] ≤ (ȳ)j

)
. (13)

Each term is independently estimated as empirical distribution, yielding

F̂
multi

Yai (ȳ) =
K∏
j=1

( 1

|F|
·
∣∣{v ∈ F : d

(
ai[j],v[j]

)
≤ (ȳ)j

}∣∣). (14)

The background model for sum dissimilarity is characterized by the dis-
tribution Fsum

Yai (y), which is estimated by convolving the estimated densities of
the part dissimilarities; we refer the reader to [21] for details.
The background model for max-value dissimilarity is characterized by
the distribution Fmax

Yai (y). The max-value dissimilarity is a particular case of the
multi-value dissimilarity and is similarly estimated; see also [17, 15].

As before, we use the notation FYai (y) for general reference to a dissimilarity
distribution that describes the background model.

Partition-based background models have several advantages. First, the quan-
tization of the distribution is fine even for the small descriptor set B, as the
multiplication of several distributions reduces the step size exponentially (in the
number of parts). Moreover, the presence of a correct match in B is less harmful
because even if the corresponding descriptor is globally closest to ai, it doesn’t
necessarily mean that all its parts are closest to the respective parts ai[j] as well.

The proposed matching algorithm, based on the probabilistic interpretation
and the distribution estimation, is concisely specified in Algorithm 1.
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Algorithm 1 Partition-based matching algorithm

Preliminary: Choose a basis distance d, a dissimilarity measure δ, and the type of
false alarm probability (conditional or not).
Input: Two sets of descriptors, A,B, associated with two sets of image points.
Output: A set of matches, one for every descriptor ai ∈ A, with corresponding
estimates for probability of false match

{(
(ai,bj(i)), PFA(ai,bj(i))

)}
.

Algorithm

1. For each descriptor ai ∈ A,
(a) For each descriptor part calculate all basis distances {d(ai,bj) : j =

1, 2, . . . , |B|} and estimate a one-dimensional empirical distribution.
(b) Estimate the background model either by taking the convolution of the em-

pirical densities (for sum dissimilarity [21]) or by just keeping them as a set of
distributions (for max-value [17, 15] or multi-value dissimilarities (Eq. 14)).

(c) For each descriptor bj ∈ B, calculate the dissimilarity δ(ai,bj) and use the
background model to infer the probability of false alarm PFA1−1(ai,bj).

(d) Choose the descriptor associated with the lowest PFA1−1: bj(i) =
argminbj∈B PFA1−1(ai,bj). Let (ai,bj(i)) be the resulting match.

(e) Augment the match (ai,bj(i)) with its unconditional PFA (Eq. 2) or the con-
ditional PFA (Eq. 6).

4 Markov inequality based interpreting

Sec. 2 describes a method for using a distribution of false dissimilarities for
matching. It justifies the ratio criterion [9] as an instance of this approach. Here
we propose an alternative explanation of and justification for the ratio criterion.

Consider the set of NB ordered dissimilarities (e.g. Euclidean distances)
δ1, . . . , δNB

between a given descriptor ai ∈ A and all descriptors in B. The
hypothesized match (ai,bj(i)) corresponds to the smallest dissimilarity δ1. Our
goal, again, is to estimate how likely is it that δ1 was drawn from the same dis-
tribution as the other dissimilarities. To that end, we apply the Markov bound.

We assume that the dissimilarities associated with incorrect matches are in-
dependently drawn instances of the random variable Y . Let D,Z be two random
variables, related to Y , where D assumes the minimal dissimilarity over a set
of N samples, and Z = 1/D. Z is nonnegative, and by Markov’s inequality,
satisfies Pr(Z ≥ a) ≤ E[Z]/a, or Pr(1/D ≥ a) ≤ E[1/D]/a. Letting d = 1/a and
rearranging the inequality, we get

Pr(D ≤ d) ≤ d · E[1/D]. (15)

Thus, knowing the expected value E[1/D], we could bound the probability
that the observed minimal value, δ1, belongs to the distribution of D. To estimate
E[1/D] from a single data set (δ1 excluded), with a single minimal value, we use
bootstrapping. Given a set of N samples, bootstrapping takes multiple samples
of length N , drawn uniformly with replacement, and estimates the required
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Table 1: mAP for absolute algorithms for the Mikolajczyk et al. [11] dataset.
PMV is third from the right.

Deterministic Probabilistic

sum max-value multi-value
L2 CEMD TMEMD L2 CEMD TMEMD L2 CEMD TMEMD L2 CEMD TMEMD

Blur (Bikes) 0.756 0.694 0.737 0.795 0.556 0.795 0.720 0.455 0.706 0.798 0.769 0.791

Blur (Trees) 0.513 0.460 0.499 0.524 0.483 0.522 0.419 0.318 0.408 0.516 0.481 0.512

Viewpoint (Graffiti) 0.334 0.317 0.337 0.354 0.359 0.373 0.281 0.247 0.277 0.383 0.368 0.388

Viewpoint (Wall) 0.686 0.666 0.689 0.697 0.456 0.708 0.587 0.515 0.594 0.714 0.688 0.713

Zoom + Rotation (Bark) 0.804 0.750 0.771 0.812 0.622 0.789 0.736 0.665 0.712 0.823 0.788 0.812

Zoom + Rotation (Boat) 0.789 0.761 0.783 0.813 0.797 0.815 0.725 0.676 0.714 0.829 0.808 0.826

Light (Leuven) 0.861 0.433 0.845 0.899 0.884 0.897 0.855 0.791 0.841 0.909 0.886 0.897

JPEG Compression (UBC) 0.874 0.864 0.874 0.878 0.698 0.882 0.852 0.447 0.854 0.876 0.874 0.878

statistics from the samples. It is easy to show that, for large N = NB ,

Ê[1/D] =

NB∑
k=2

pk
1

δk
≤ 1

δ2
, (16)

where (p2, p3, p4, . . . ) ≈ (0.63, 0.23, 0.08, . . . ). Combining Eqs. 15 and 16, we get

Pr(D ≤ δ1) ≤ δ1 · E[1/D] ≈ δ1 · Ê[1/D] ≤ δ1
δ2
. (17)

We can now justify Lowe’s relative criterion by observing that the ratio δ1/δ2
approximates a bound over the probability that a randomly drawn dissimilarity
associated with incorrect matches is smaller or equal to the observed δ1. If the
bound is small, then so is the probability that δ1 is associated with an incorrect
match. This makes the ratio δ1/δ2 a statistically meaningful criterion.

5 Experiments

5.1 Experimental setup

We experimented with 18 different variations of the proposed matching algo-
rithm, corresponding to combinations of three different basis distances (L2,
circular EMD (CEMD) [20], and thresholded modulo EMD (TMEMD) [19]),
the three different dissimilarity measures (sum, max-value, and multi-value),
and the unconditional and conditional matching criteria. The variant that uses
CEMD distance, sum dissimilarity, and the unconditional criterion corresponds
to the algorithm of [21]. We denote by PMV (probabilistic multi-value) and
PMVc (probabilistic multi-value conditional) the variations that use the L2 ba-
sis distance and the multi-value dissimilarity. The probabilistic algorithms are
compared to deterministic algorithms which use the same basis distances as
dissimilarities between the descriptors (without partition). The deterministic al-
gorithms are implemented in six versions corresponding to the three distance
functions and to the two criteria based on distance and distance ratio (two of
those variations correspond to [9] and [19]).
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Table 2: mAP for relative algorithms for the Mikolajczyk et al. [11] dataset.
PMVc is third from the right.

Deterministic Probabilistic

sum max-value multi-value
L2 CEMD TMEMD L2 CEMD TMEMD L2 CEMD TMEMD L2 CEMD TMEMD

Blur (Bikes) 0.812 0.792 0.810 0.814 0.383 0.812 0.740 0.649 0.727 0.812 0.776 0.806

Blur (Trees) 0.536 0.499 0.535 0.539 0.505 0.539 0.430 0.335 0.420 0.533 0.497 0.527

Viewpoint (Graffiti) 0.380 0.381 0.396 0.385 0.161 0.405 0.299 0.270 0.299 0.411 0.398 0.419

Viewpoint (Wall) 0.707 0.605 0.713 0.711 0.605 0.718 0.595 0.511 0.603 0.725 0.689 0.723

Zoom + Rotation (Bark) 0.816 0.762 0.787 0.816 0.769 0.789 0.739 0.656 0.713 0.822 0.787 0.811

Zoom + Rotation (Boat) 0.823 0.799 0.820 0.825 0.623 0.822 0.732 0.684 0.721 0.834 0.795 0.825

Light (Leuven) 0.907 0.676 0.908 0.909 0.678 0.909 0.874 0.800 0.862 0.917 0.898 0.908

JPEG Compression (UBC) 0.883 0.700 0.886 0.884 0.477 0.887 0.855 0.381 0.856 0.881 0.878 0.883

We experimented with the datasets of Mikolajczyk et al. [11] and of Fischer
et al. [6]. Both datasets contain 5 image pairs, each composed of an original
image and a transformed version of it. We used the evaluation protocol of [11]
which relies on finding the homography between the images, for both sets. All the
algorithms match SIFT descriptors, extracted using the VLFEAT package [26].
The partition-based algorithms divide the SIFT descriptor into 16 parts, corre-
sponding to the 16 histograms of the standard SIFT. Different partitioning, into
2, 4, 8, and 32 parts, performed less well compared to the 16 part partition.

5.2 Matching Results

The results for the Mikolajczyk et al. [11] dataset are summarized using the
mAP (mean average precision) per scene (over the first 4 transformation levels)
in Table 1 and Table 2, and the mAP per transformation level in Fig. 1. In Ta-
ble 1 we compare the proposed probabilistic algorithms that use unconditional
probability (PFA1−1) to Lowe’s first matching criterion, and to the other de-
terministic algorithms that use CEMD [20] and TMEMD [19]. The algorithms
in this set are referred to as absolute. Table 2 reports on relative algorithms, in-
cluding the probabilistic algorithms that use the conditional probability of false
alarm, PFAc, and the deterministic versions corresponding to Lowe’s distance
ratio, as well as to similar ratios of the EMD variants. Fig. 1 compares the 4
versions corresponding to PMV , PMVc, and Lowe’s first and second criteria.

The results for the absolute algorithms are clear: PMV obtains the best
results on the average. The sum-value based algorithm follows closely. Both
algorithms clearly outperform the deterministic algorithms.

The performance obtained by using the unconditional probabilistic criterion
is comparable to that obtained by the non-probabilistic distance ratio criterion.
This is not surprising because both algorithms rely on the context of other
dissimilarities, besides that of the tested descriptor pair; see also [21].

While the three dissimilarities use the same context different results are
achieved. The max dissimilarity, for example, performs even worse than the
deterministic approaches. It seems that the multi-value algorithm is able to ex-
ploit the cell-dependent variability in the distances between the various SIFT
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Fig. 1: mAP as a function of the transformation magnitude for PMV , PMVc,
and Lowe’s two criteria for the Mikolajczyk et al. [11] dataset.

components. This variability could result from the downweighting of the outer
cells and the lower variability of their histograms, due to the larger distance of
the outer cells from the most likely location of the interest point: the patch’s
center. We believe that it is also due to the accidental nonuniformity of the dis-
tances between the parts, which is averaged by the sum distance, and leads to
the poorer performance of the max-value dissimilarity measure, which is based
on a uniform dissimilarity threshold.

The differences between the relative algorithms are small. PMVc is slightly
better, especially for viewpoint transformations which is the most common ap-
plication for matching. We believe that the reason for PMVc being less successful
with the blur and JPEG compression is that these transformations add noise to
the image, which has a greater impact on low-dimensional vectors. The results
demonstrate the validity of the interpretations proposed in this paper.

Fig 2 summarizes the results obtained for the Fischer et al. dataset [6] (the
3 nonlinear transformations, which do not correspond to a homography, were
ignored). The results are consistent, although with only a minor improvement
compared to Lowe’s ratio criterion. Note that performance differences between
Lowe’s first criterion and second criterion are not expressed here as well3.

The partition-based algorithms are more computationally expensive than the
deterministic ones (slower by a factor of 8 to 15, in our current, unoptimized,

3 Different matching papers use different evaluation protocols, different feature points
(even when using SIFT descriptors), and different criteria for counting recalls and
false alarms. As such, the results cannot be directly compared with those reported
in some other papers. Nevertheless, we use exactly the same evaluation protocol for
all the algorithms tested here.
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Fig. 2: mAP as a function of the transformation levels for PMV , PMVc, and
Lowe’s two criteria, for the Fischer et al. [6] dataset.

implementation). As our goal in the implementation was to demonstrate the
validity of the probabilistic justification, and to show that the generality of
the analysis possibly leads to diverse algorithms, we did not focus on runtime
optimizations. Our algorithms can be optimized following common methods of
efficient nearest neighbor search [16]. This is left for future work.

5.3 Complementary experiments

The importance of point-adapted distribution All the above experiments
used point-adapted distributions. We experimented also with the internal and
external distributions (defined in Sec. 3.1), using images from the Caltech 101
dataset [5] to compute the external distribution. We found that the algorithms
performed best with the point-adapted distribution; see Fig. 3. The external
distribution based versions performed worse than Lowe’s first distance criterion.

Relaxing the independence assumption We challenged the statistical inde-
pendence assumption and found that some substantial correlations between the
partial distances exist. Using a more complex distribution model, which relies
on a dependence tree (following [18]), did not improve the ranking result.

6 Discussion and conclusions

The main contributions of this paper are two, independent, probabilistic inter-
pretations of Lowe’s ratio criterion. This criterion, used to match SIFT descrip-
tors, is very effective and widely used, yet so far it has only been empirically
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Fig. 3: Comparing external, internal, and point-adaptive distribution estimations
(see Sec. 2.1 and Sec. 5.3) for the Mikolajczyk et al. [11] dataset.

based. Our interpretations show that, in a probabilistic setting, it corresponds
either to a conditional probability that the match is incorrect, or to the Markov
bound on this probability. To the best of our knowledge, this is the first rigorous
justification of this important tool.

To test the (first) interpretation empirically, we used techniques of the a con-
trario approach to construct a distribution of the dissimilarities associated with
false matches. Some dissimilarity functions were considered, including one that,
unlike common measures, expresses the dissimilarity by a multi-value (vector)
measure and can better capture the variability of the descriptor.

Using a matching criterion based on conditional probability and a multi-
value dissimilarity measure led to state-of-the-art matching performance (for
non-learning-based algorithms). The improvement over the previous, nonproba-
bilistic, algorithms is not very large. The experiments nonetheless support the
probabilistic interpretation, as they demonstrate that explicit use of it leads to
consistent and even better results.

We follow several aspects of the a contrario theory [3, 4]: we use background
models that provide the PFA probability that an event occurs by chance, and the
partition-based estimation technique. However, in order to use the probabilistic
interpretation of the ratio criterion, and contrary to the a contrario approach, we
refrain from using the expected number of false alarms (NFA) as the matching
criterion and use the probability of false alarm instead.

One promising idea for future work is to combine our method of using only
false positive error estimation in the decision-making process with models for
false negative errors; see e.g. [10], which focuses on the differences between spe-
cific descriptors in different images.
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