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Abstract

In contrast to human vision, the common recognition al-
gorithms often fail on partially occluded images. We pro-
pose to characterize, empirically, the algorithmic limits by
finding the minimal image patch (MRP) that is by itself suffi-
cient to recognize the image. A specialized deep network al-
lows us to find the most informative patches of a given size,
and serves as an experimental tool. A human vision study
recently characterized related (but different) minimally rec-
ognizable configurations (MIRCs) [22]. The drop in accu-
racy associated with size reduction of these MIRCs was sub-
stantially sharp. Interestingly, such sharp reductions were
found, for some measures, in our study as well.

1. Introduction
Deep neural networks (DNNs) provide the current state-

of-the-art performance in many computer vision tasks, and
especially in recognition [11, 7, 8, 9]. In contrast to the hu-
man recognition processes, which can rely on small and par-
tial object regions to successfully recognize an object, the
performance of neural networks quickly deteriorates when
objects are partially occluded or cropped [16, 15].

This raises a natural question: how much information is
needed for recognizing an object?

In this work we consider a special practical version of
this question: what is the minimal size of a square sub-
image (patch) that is sufficient for recognition using a con-
volutional neural network (CNN)? The restriction to a CNN
is not severe because currently CNN algorithms are at least
as good as any other algorithms.

This is not the only way to formalize the question of suf-
ficient information, and other works considered, for exam-
ple, the minimal resolution required to recognize an image;
see, e.g. [21] .

To achieve the proposed characterization, we design a
special neural architecture that identifies the most informa-
tive patch and classifies the image relying on the informa-
tion contained in it. Several variations of this patch based

Figure 1. Minimally recognizable patches (blue) and best unrec-
ognizable patches of slightly smaller size (red).

classification (PBC) architecture, corresponding to different
patch sizes and different ways of accumulating the local in-
formation, are considered.

As expected, the minimal recognizable patches we found
differ between the categories and within the categories, and
increase for higher required accuracy. Interestingly, we also
found that for the majority of images, the confidence associ-
ated with the patch-based recognition changed sharply with
the patch size. This finding is consistent with some related
observations on human vision, made recently [22].

Thus, this paper offers the following contributions:

1. The PBC neural architecture that finds the most infor-
mative patch and uses it to categorize the entire image.

2. A characterization of the minimal patch size sufficient
for categorization.

3. An analysis showing some resemblance between the
decisions made by patch based classification and ob-
servations on human vision.
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2. Related Work

Local regions and features were used by many classi-
cal algorithms, and provided improved immunity to pose
change, partial occlusion, and in-class variance [13]. Some
examples are Visual-Bag-of-Words (BOW) models [4],
constellation models [3] and the deformable-parts-models
[5]. Likewise, convolutional neural networks (CNNs) effec-
tively combine information available both on a global and
local scale [11, 12]. While they represent local features, the
recognition accuracy of CNNs decreases when faced with
partial images, as happens, e.g. in the presence of occlu-
sion, [15, 16, 23, 14]. Specialized dedicated modifications
to the standard recognition architectures [15, 24] improve
their partial image accuracy which is however still much
lower that the accuracy obtained with full-image data.

This deterioration is expected, and yet, it stands in con-
trast to human vision, in which object recognition is attained
remarkably well, even when seeing only part of the objects.

The human vision system is far from being fully under-
stood. Several general theories have been offered to provide
insight into human visual object recognition. The leading
approaches to neural object representation can be divided
to the viewpoint-invariant approach suggested in [2], and to
the viewpoint-dependent approach used in [20].

While the human object recognition process remains de-
batable, it clearly works well even with partial data. First,
low resolution is sufficient [21] and 32×32 color (or 64×64
gray-level) images are recognized well. Recently, a psy-
chophysical study [22] showed that reliable human object
recognition is possible even from small image-patches, and
identified a special class of minimal image patches. These
patches are minimal in the sense that sub-patches, smaller
by 20%, or identical patches with 20% lower resolution,
were unrecognizable. That is, such patches, denoted mini-
mal recognizable configurations (MIRCs), are locally mini-
mal. Interestingly, this study found that the (human) recog-
nition accuracy associated with the sub-patches was sig-
nificantly lower than that associated with the MIRC itself.
Computer recognition tests, applied to the MIRCs and to
their sub-images with computer-vision algorithms, did not
find a similar accuracy drop. A model for local image in-
terpretation [1], further dismantled these MIRCs into sim-
ple components (e.g. edges), and proposes an explanation
of the sharp drops finding. A follow-up on this work have
demonstrated that CNN classification of some patches, de-
noted fragile recognition images (FRIs), may be changed
due to small translation or to small resolution reduction
[19]. Our work relates to [22] because some of the minimal
recognizable patches we find may be regarded as computer
specified MIRCs and have similar properties.

3. Evaluating the Minimal Recognizable Patch
Our goal is to evaluate the minimal size sub-image

(patch) required for successful categorization. We consider
this general question in the context of a specific data set and
in the closed set setting [17].

For successful categorization, the patch should be suf-
ficiently informative, such that a categorization procedure
accepting only this patch as its input will classify it to the
correct category.

We are interested in the most informative patch in the
image. Intuitively, the presence of this sub-image is suf-
ficient for categorizing the (full) image successfully if the
score associated with this patch and with the correct class
is higher that all other scores associated with other classes
and/or other patches.

Formally, let Sc
p denote the score of class c associated

with the patch p. This score is provided by a classifier, de-
noted a single patch model, described below. Then the most
informative patch suffices for categorization if the inferred
class,

ĉ = arg maxc maxp S
c
p, (1)

is correct.
Intuitively, a very small patch or a smooth one cannot

be informative because typically, similar patches will be
present in images of many categories. However, for cate-
gories that are not too similar, we expect to find, in each
image, a sub-image of sufficient size and detail, that will be
consistent only with its category.

By patch size we mean, approximately, the size as a frac-
tion of the full object size, as seen in the image. For our
study, we shall use a data set containing images of fixed size
(32 × 32). We shall also assume that each image contains
one object, which is tightly bounded by the image bound-
aries. This assumption approximately holds for most im-
ages in a variant of the CIFAR data sets, that we use. Under
this assumption the patch size may be specified by its size
in pixels.

3.1. The Patch Classification Model

The main tool developed for the study of minimal rec-
ognizable patch is the Patch Based Classification (PBC)
model, which performs image-classification based on in-
formation included in the best, or most informative single
patch of the full image.

The best patch is unknown and is not pre-specified,
therefore locating it is part of the network’s task. That is,
the classification task is weakly supervised.

The general architecture of the network is composed of
several parts: a. Splitting the input image into (overlapping)
spatial patches and resizing each one to a standardized size.
b. Independently analyzing each patch using a CNN, de-
noted the single-patch-network. For each patch, the single-
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Figure 2. Patch-based-classification architecture - (A) The input image is split into overlapping, spatial patches, which are resized to a
standardized size. (B) Each patch passes thru the single-patch-network. (C) The aggregation layer transforms patch-class-scores into
image-class-scores and a softmax layer converts them into estimated image-level class-probabilities.

patch-network provides C patch level scores, one for each
category. c. An aggregation layer converting the patch-level
scores of all patches into C image-level scores. d. A soft-
max layer getting the image level scores and providing C
image-level class-probabilities; See fig. 2 for a visualization
of the model. We elaborate on these network parts below.

3.2. Single Patch Network

The patch-network could be any straightforward clas-
sification network. The network used in our experiments
follows the All-Convolutional-Net model proposed in [18].
This model was slightly modified by replacing the dropout
regularization layers with batch-normalization and the 6×6
global-averaging layer with a more generalized 6 × 6 con-
volutional layer. The softmax layer was moved out of the
single-patch-network, to be placed after the aggregation
stage; see section 3.4. A detailed summary table of the ar-
chitecture, can be found in the supplementary material.

We chose to use a uniform size (32 × 32), interpolated,
patch, as an input to the single-patch-network. The classi-
fier is still learned for every patch size independently, and
yet, this choice enables us to work with a uniform architec-
ture. We experimented with other interpolated input sizes
and found, as expected, that smaller interpolated patches
work somewhat better with smaller original patch sizes, for
which the interpolation is less extreme. However, the differ-
ences in the results (less then 5%) were not significant for
this study.

3.3. Patch Score Aggregation

The manner by which the patch-level scores are com-
pared and aggregated into image-level scores influences the
choice of the best patch and its associated confidence. We
considered two types of max score aggregation:

Location independent max - This maximum score, de-
noted by Sc

max−ind, is evaluated over all patches, sep-
arately for each class. For this aggregation, the score
for each class is commonly taken from a different
patch.

Winner directed max - This maximum score is denoted
by Sc

max−dir. Here, the score of all classes is taken
from a single patch, the one associated with the overall
maximum score.

Note that both aggregation methods determine the win-
ner according to the best overall score, as specified in eq.
(1). The first uses other patches for evaluating the scores
associated with other classes, and hence the confidence.
The second aggregation takes the other classes’ scores from
the same patch, ignoring possibly higher scores from other
patches. Formally,

Sc
max−ind = max

p
{Sc

p}, (2)

Sc
max−dir = Sc

p∗ , where p∗ = argmaxpmaxcS
c
p (3)

It seems that an intelligent agent, wishing to categorize
the object(s) in a scene, will scan it and will try to extract
the best evidence for each category, no matter where. In
this context, calculating confidence using the first aggrega-
tion method is justified. On the other hand, in experimental
conditions, when only one patch is observed, the second ag-
gregation method describes the available information better.
Moreover, in scenes containing several objects, the second
aggregation methods allows the detection of multiple cate-
gories. For such scenes, it also helps the learning process
because the presence of an object from one category on one
place does not indicates that responses to other categories in
other locations should be suppressed. Empirically, the two
aggregation methods give similar results with some advan-
tage to the first.

3.4. Placing the Softmax Layer

We placed the softmax score normalization at the final
layer, acting on the image-level scores provided by the ag-
gregation layer. The alternative option, of applying softmax
normalization to every patch, before choosing the maximal
one, would let the response to other classes influence the
maximum. A substantial, but not maximal response to some
class, for example, would lower the normalized response to
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the winning class, which could otherwise be larger than the
response to this class in all other patches. We also found
experimentally that a softmax layer at the patch-level hurts
the model’s generalization ability.

4. Experiments and Results
4.1. The CIFAR10* Dataset

We started our experiments with the CIFAR10 dataset
[10]. This dataset contains 10 classes: airplane, automo-
bile, bird, cat, deer, dog, frog, horse, ship and truck. With
the exception of the ”birds” and ”frogs” classes, this dataset
can be divided into pairs of related and similar categories:
ship-plane, car-truck, dog-cat and horse-deer. We observed
that for small patches, the learned model often preferred
one of two similar categories, and “gave-up” on the sec-
ond one. It seems that at small patch sizes, informative
areas of related categories (e.g. the wheels in automobile
and trucks) were indistinguishable for the classifier to be
separated effectively. To achieve better mean performance
over the dataset, it chose the class with more, or clearer,
appearances of this informative area. This phenomenon in-

Figure 3. Mean and class specific accuracy with color images.

Figure 4. Mean and class specific accuracy with gray level images.

terferes with finding minimal recognizable patches for the
non-preferred categories. Therefore, we experimented with
a CIFAR10 variant which is easier in the sense of contain-
ing less inner-similarities. This variant, denoted CIFAR10*,
was based on classes from the CIFAR10 and CIFAR100,
and consisted of 3000 samples from each of the following
classes: airplane, automobile, bird, cat, deer, frog, fish, tree,
person and insect. The data set was divided into a training
set of 25,000 images and a test set of 5,000 images, both
well-balanced between the 10 classes.

4.2. Implementation

For training we used a categorical cross-entropy loss
function with an Adam optimizer. Training was conducted
with a batch size of 50 images, for 150 epochs, with an ini-
tial learning rate of 0.001, reduced by a factor of 2 every 30
epochs. The weights were regulated with ridge regression,
with an 1e-3 coefficient. All input images are normalized
with the mean and variance of the training set. The network
was implemented with a Keras-TensorFlow neural-network
library, using a Geforce Titan X GPU.

During training, the spatial stride taken while splitting
each image was set to be half the patch size, except the
smallest, 2× 2 patch, for which a 2× 2 stride was used due
to GPU memory limitations. During evaluation, the stride
was always set to be a single pixel.

We trained the single patch model with the same hyper-
parameters for all patch sizes. We checked experimen-
tally that optimizing the hyper-parameters depending on the
patch size had only a small effect.

4.3. Categorizing Color Images

We trained the 16 patch-based model with the first
aggregation method (location independent max) for 16
square patch sizes, di × di pixels, where d1 = 32, d2 =
30, . . . , d15 = 4, d16 = 2. We refer to the models simply as
”model of size d”. The model of size 32 corresponds to the
full image.

We then applied the learned models to classifying the
test sets of CIFAR10*, and estimated the accuracy as the
fraction of images classified to the correct category. As
expected, smaller patches are associated with reduced ac-
curacy. Remarkably all categories are classified correctly
with 50% accuracy with 10× 10 patches, corresponding to
roughly 0.1 of the image area.

4.4. The Basic Gray Level Experiment

Interestingly, some categories may be identified from
very small patch sizes, which may correspond to either dis-
tinct small features (e.g. a wheel or an eye) or to texture
(tree or frog), but is probably due mostly to color. Color
can be very discriminative, especially for the close-set con-
text. A single blue pixel, for example, can hint to one of 3
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classes: fish, birds or airplanes. See [21] for a study reveal-
ing the advantage of color in low resolution images.

The dependence of color on size is weak, and here we are
more interested in the size dependent information. There-
fore, we converted our data sets into grayscale and trained a
single-channel-input version of the patch based model with
the same aggregation method and 16 patch sizes. The re-
sults, shown in fig. 4, demonstrate that the accuracy associ-
ated with small patches significantly decreases.

4.5. The Aggregation Effect

We trained a single channel input version of the patch
based model with the second, winner-directed, aggregation
method, and compare the accuracy of the resulting classifier
to that learned with location independent aggregation; see
fig. 5. The differences are small. First, note that the differ-
ence is due only to possibly different training, because once
the classifier is given, the class assigned to the images is de-
termined according to eq. 1 for both aggregations methods.
The small difference is remarkable because training with
location independent aggregation uses the best patches for
each incorrect class for suppressing the score to this class.
Using these patches and not the particular winner directed
patch is much more informative and leads to better SGD
steps and faster convergence. Yet, we see that even with
the less informative winner directed patches, learning is al-
most as good. Note, however, that with smaller patches the
overlap between these best patches and the winner patch is
smaller, the difference is potentially larger, and the disad-
vantage of learning with winner dependent aggregation is
more significant. The difference in accuracy is correspond-
ingly larger, but it is still small.

4.6. Is There a Sharp Drop Effect?

Following the observations on human vision [22], which
address a different but related problem, it would be inter-

Figure 5. Difference in accuracy between the two aggregation
methods.

esting to see if there is a sharp drop effect here. A sharp
effect exists if some measure of recognition is changed sig-
nificantly between two consecutive patch sizes.

The results of our investigation are mixed. For some
recognition measures there is no sharp effect, but for one
there is.

For the first experiment (color images), we measured in-
dividual accuracy drops for different classes and for each
patch size step. The maximal accuracy drop, calculated in-
dependently for each class, is given in the legend of fig. 3.
Clearly, for all classes, the maximal accuracy drop is mod-
erate and the accuracy curve is rather smooth. For some
patch size steps the accuracy drop is higher than for other
but the difference is not large and for no patch size step is
the accuracy drop larger than half of the accuracy range (i.e.
than 0.5). The maximal value is 0.26.

The color information contributes to the accuracy curve
smoothness, because color information, as available from,
say, a color histogram, depends only weakly on the patch
size. Indeed, the accuracy drops observed for gray level
image for larger, and the maximal accuracy drop went up to
0.45; see the legend in fig. 4.

While the compared patch pairs and the classifier range
of responses, are different here and in [22], it is clear that
the accuracy drop found here is significantly lower than the
average value of 0.71± 0.05 reported in [22].

4.7. Single-Image Experiments

A major difference between our experiments and the
psychophysical experiment described in [22] is that in [22]
the ability to classify an image from a patch was evalu-
ated independently for each particular patch, using the re-
sponses available from an ensemble of subjects. Each sub-
image was observed by many participants and the recogni-
tion accuracy was estimated as fraction of the participants
that classified it correctly. In our experiments, and essen-
tially in most image classification processes, the situation
is the opposite. We usually have only one algorithmic ob-
server but many images of the same object or category. The
recognition accuracy is estimated as the fraction of images
(in a category) that are correctly classified from the most
informative fixed size patch.

Images of objects from within a given category differ a
lot due to the intra-class variability and the uncontrolled ob-
ject pose. In particular, the minimal size of a sufficiently
informative patch differs as well. Thus, for a particular
patch size, some images in the ensemble contain a patch
that is sufficient for successful recognition, but other im-
ages do not. As patch size increases, the fraction of images
that contain a sufficiently informative patch also increases,
sometimes slowly. Hence the smooth accuracy curve and
the small accuracy drops.

We therefore proceed to experiments on single images,
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Figure 6. Confidence (Softmax-response of the ground truth class) in single-images. (Left): Images with largest max-drops per class.
(Right): Images with smallest max-drops per class.

and would like to estimate the recognition accuracy as a
function of patch size. For a particular image, the accuracy
cannot be estimated empirically and is replaced by a single
image accuracy estimate, or confidence. In networks trained
with cross entropy loss, the softmax response approximates
the posterior probability for this category, and may be used
as a simple, and yet reasonably accurate, confidence [6].

The confidence curves for specific images reveal sharp,
significant, accuracy drops in many images. The curves as-
sociated with the maximal and the minimal drop in each cat-
egory are given in fig. 6. A small part of the images were
associated with a smooth uniform confidence drop starting
at some patch size; see fig. 6(right). Some other images
were difficult to classify even as a full-image, and were as-
sociated with low, smooth, confidence curves.

For most images, however, the maximal confidence drop
is substantial, as revealed the histogram of the maximal
drop; see fig. 7. Clearly, for the majority of images, a max-
imal drop larger than 0.5 was found.

As expected, the critical patch sizes associated with the
maximal confidence drop are not fixed. (Otherwise the eval-
uation of accuracy over an ensemble of images would be
characterized by a sharp drop as well.) To show this varia-
tion, we plotted a 2D histograms of the maximal drop size
and the patch size change; see fig. 8. Clearly, the size of this
critical patch varies significantly over the set of images as-
sociated with each category, and for some categories there
are even several dominant sizes. The drop size varied as
well and was typically larger when it occurred with larger
patches. These variations fully explains the lack of signif-
icant accuracy drops, when the accuracy is evaluated as an
average over a data set.

This behavior was reproduced for both grayscale and
color images. There was a small difference in the maxi-
mal accuracy drop. The average (over all images) of this
drop was 0.624 for grayscale images and 0.608 for color.
This difference was smaller than expected, considering the

variances observed in sec. 4.4. There was, however, a clear
gap in the patch sizes associated with the maximal accuracy
drop: the gray level images required larger sizes for recog-
nition.

The second aggregation method revealed even more sub-
stantial drops, with average maximal confidence drop being
0.72. The number of images, with a maximal drop larger
than 0.5 somewhat increased (3683 vs. 3492).

5. The Minimal Recognizable Patch
As described above, for a majority of the images, there

is a sharp confidence drop which, for most images, is larger
than 0.5. This implies that there is a patch of size d∗ = di,
for which the confidence is higher than 0.5 and is substan-
tially larger than the confidence of the best smaller patch, of
size di+1. We call to this critical patch the minimal recog-
nizable patch (MRP).

Using our methods, that specify only one patch as the
best one for every given size, there is only one MRP in every
image. However, other images patches, associated with the

Figure 7. Maximal-drop size of softmax-response in gray level im-
ages. A majority of images (4328 out of 5000) displayed maximal
drops consistent with the MIRC requirement in [22].
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Figure 8. 2D histograms of maximal-drops in softmax-response. Each histogram shows drop-size (x-axis) and between which patch sizes
it occurred (y-axis) for the 500 test images of a specific category.

same size and with somewhat lower scores than the best one
are often present in the image. These patches are associated
with similarly large confidence drop, and could be regarded
as MRPs as well.

This term MRP is somewhat misleading because, in prin-
ciple, the classifier may give the correct classification even
if the confidence is lower than 0.5. Yet, due to the large
typical drop, this is rarely the case.

Some MRPs are shown in fig. 9. Some of them are con-
sistent with human judgment which can identify the cate-
gory from the MRP but not from the smaller patch. For
some MRPs however the consistency is weaker and humans
either cannot classify the image from the MRPs, or can do
it even from the smaller images.

6. Conclusions
This work empirically characterizes the minimal sub-

image required to categorize an image successfully. A spe-
cialized deep network was designed for this task, and was
used to find the most informative sub-image in each image.
We show that the size of this minimal sub-image takes, on
average, is a small fraction of its full area, but also that it
varies significantly within each category.

The single image experiments (sec 4.7) seem related to
the human vision study described in [22]. Both share a com-
mon finding: there are image regions, that are sufficiently
informative for recognition, but stop to provide the required
information due to a small size reduction. Moreover, the
reduction in region informativeness is sharp and substan-
tial. Remarkably, in both studies, this sharp reduction was
not part of the demands but was found, empirically, as a
byproduct.

Interestingly, earlier work did not succeed to compu-
tationally reproduce the perceptual sharp reduction effect
[22]. See, however, [19]. We intend to further study this
difference. One possible advantage of our algorithm is that
finding the (unknown) most informative patch of a given

size, is a weakly supervised auxiliary task, which uses all
image patches for training, and supports the classifier.
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