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3DmFV: 3D Point Cloud Classification in
Real-Time using Convolutional Neural Networks

Yizhak Ben-Shabat1, Michael Lindenbaum2, Anath Fischer3

Abstract—Modern robotic systems are often equipped with a
direct 3D data acquisition device, e.g. LiDAR, which provides
a rich 3D point cloud representation of the surroundings. This
representation is commonly used for obstacle avoidance and
mapping. Here, we propose a new approach for using point clouds
for another critical robotic capability, semantic understanding of
the environment (i.e. object classification). Convolutional neural
networks (CNN), that perform extremely well for object clas-
sification in 2D images, are not easily extendible to 3D point
clouds analysis. It is not straightforward due to point clouds’
irregular format and a varying number of points. The common
solution of transforming the point cloud data into a 3D voxel grid
needs to address severe accuracy vs memory size tradeoffs. In this
paper we propose a novel, intuitively interpretable, 3D point cloud
representation called 3D Modified Fisher Vectors (3DmFV). Our
representation is hybrid as it combines a coarse discrete grid
structure with continuous generalized Fisher vectors. Using the
grid enables us to design a new CNN architecture for real-time
point cloud classification. In a series of performance analysis
experiments, we demonstrate competitive results or even better
than state-of-the-art on challenging benchmark datasets while
maintaining robustness to various data corruptions.

Index Terms—Deep Learning in Robotics and Automation,
Recognition, Computer Vision for Transportation, Computer
Vision for Other Robotic Applications

I. INTRODUCTION

OBJECT classification is an important skill for au-
tonomous robots operating in unknown environments.

Direct acquisition of 3D geometrical data using, e.g., LiDAR
and RGBD cameras, providing point clouds, has become a
common choice for autonomouse vehicles such as cars [1], and
quadrotors [2]. These sensors are commonly used for obstacle
avoidance and mapping but have great potential to contribute
also to a semantic understanding of the environment.

We propose a new approach for analyzing a 3D point
cloud, using deep neural networks, and especially convo-
lutional neural networks (ConvNets). ConvNets have shown
remarkable performance in image analysis. Adapting them to
point clouds is not, however, straightforward. ConvNets are
built for input data arranged in fixed size arrays, on which
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linear space invariant filters (convolutions) may be applied.
Point clouds, unfortunately, are unstructured, unordered, and
contain a varying number of points. Therefore, they do not fit
naturally into a spatial array (grid).

Several methods for extending ConvNets to 3D point cloud
analysis have been proposed [3], [4], [5]. A common approach
is to rasterize the 3D point data into a 3D voxel grid (array),
on which ConvNets can be easily applied. This approach,
however, suffers from a tradeoff between its computational cost
and approximation accuracy. We discuss this approach, as well
as other common point cloud representations, in Section II.

We take a different approach and use a new point cloud hy-
brid representation, the 3D Modified Fisher Vector (3DmFV).
The representation describes points by their deviation from a
Gaussian Mixture Model (GMM). It has some similarity to
the Fisher Vector representation (FV) [6], [7] but modifies and
generalizes it in two important ways: the proposed GMM is
specified using a set of uniform Gaussians with centers on a 3D
grid, and the components characterizing the set of points, that,
for Fisher vectors, are averages over this set, are generalized
to other functions of this set.

The representation is denoted hybrid because it combines
the discrete structure of a grid with the continuous nature of
the components. It has several advantages. First, because it
keeps the continuous properties of the point cloud, it retains
some of the point set’s fine detail and, under certain conditions,
is lossless, invertible, and is therefore equivalent to featureless
input. Second, the grid-like structure makes it possible to use
ConvNets, which yields excellent classification accuracy even
with low resolutions (e.g. 8×8×8). Finally, each component
of the proposed representation is intuitively interpretable.

The main contribution of this work is a new, accurate, robust,
and real-time object classification method for 3D point clouds.
Additional contributions are:

• A new hybrid representation for 3D point clouds
(3DmFV) which is structured and order independent.

• A new deep ConvNet architecture design (3DmFV-Net)
for point cloud classification, obtaining state of the art
results on CAD and LiDAR data.

• A thorough empirical analysis is conducted on the stabil-
ity of our method.

We first review related work on 3D classification and the
FV representation in Section II. Then, in Section III we
introduce and discuss the 3DmFV representation and 3DmFV-
Net architecture. The classification results are presented in
Section IV. Finally, Section V concludes the paper and adds
some new insight.
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II. RELATED WORK

A. Deep learning on 3D data

Point cloud features - Handcrafted features for point clouds
have shown adequate performance for many tasks. They can be
divided into two main groups: local descriptors [8], [9], [10],
[11] and global descriptors [12], [13], [14]. Some descriptors
were specifically designed for the task of object classification
in outdoor LiDAR data [15], [16]. While the comprehensive
performance evaluation in [17] suggests guidelines for feature
selection, it remains non-trivial and highly data specific.

Deep learning on 3D representations - 3D data is com-
monly represented using one of the following representations:
(a) Multi-view, (b) Volumetric grid, (c) Mesh, (d) Point clouds.
Each representation requires a different approach for modify-
ing the data to the form required by deep learning methods.

Rendering 2D images of a 3D object from multiple views,
as in [5], transforms the learning domain from 3D to the well-
researched 2D domain. Information is lost in the projection
process, but using multiple projections partially compensates.

The volumetric, voxelized, representation discretizes 3D
space similarly to an image discretizing a camera projection
plane. This enables a straightforward extension of learning
using 3D CNNs [3], [4], [5]. A recent improvement applies
an ensemble of very deep networks that extend the principles
of Inception [18] and Resnet [19] to voxelized data [20], thus
achieving the highest accuracy to date at the price of high
computational cost and training time of weeks.

A volumetric representation is associated with a quantization
tradeoff: choosing a coarse grid leads to quantization artifacts
and to substantial loss of information, whereas choosing a
fine grid significantly increases the number of voxels, which
are mostly empty but still induce a high computational cost.
The computational cost may be reduced by using efficient
data structures. For example, OctNet [21] uses unbalanced
Octrees as a space partitioning function within the network
architecture. Similarly, O-CNN [22] uses an Octree variation
that is optimized for performing convolutions on the GPU.
Alternatively, computational improvement may be achieved
by specifying efficient convolution operators, such as sparsity
aware convolutions in Vote3Deep [23], hash map based sparse
convolutions [24], or attenion based sparse convolutions (ILA-
SCNN) [25].

For the mesh representation, Spectral ConvNets [26], [27],
[28] and anisotropic ConvNets [29] can be applied. These
approaches utilize mesh topological structure, which is not
always available.

The point cloud representation is challenging because it
is both unstructured and point-wise unordered. To overcome
these challenges, the PointNet approach [30], [31] applies a
symmetric function that is insensitive to the order, on a high-
dimensional representation of the individual points. The Kd-
Network [32] imposes a kd-tree structure on the points and
uses it to learn shared weights for nodes in the tree.

Representing point clouds using Gaussians - Gaussians
were used in several previous works to represent point clouds.
The Normal Distribution Transform (NDT) [33] is a piecewise
continuous representation which models the distribution of

points by a collection of local normal distributions on several
overlapping grid cells. It quantifies the probability to find a
point in a given position with respect to the cell that contain
the point. Another approach represents each point by three
saliency features (scatter, linear, and surface) [34] which are
linear combinations of the eigenvalues of the local point sets’
covariance matrix. The saliency features distribution is then
learned by fitting a GMM using the Expectation Maximization
(EM) algorithm.

Here, we propose the 3DMFV representation for point
clouds that can be used efficiently as input to a CNN. Although
there is some similarity to NDT, our 3DmFV representation in-
cludes derivatives of all points w.r.t the Gaussians parameters,
rendering it continuous rather than piecewise-continuousness.

B. Fisher vectors

Before the age of deep learning, the bag of visual words
(BoV) [35] was a popular choice for image classification tasks.
It extracted a set of local descriptors and assigned each of them
to the closest entry in a codebook (visual vocabulary), leading
to a histogram of occurrences. Perronin and Dance [6], and
Perronnin and Thomas [36] proposed an alternative descriptor
aggregation method, called the Fisher Vector (FV), based on
the Fisher Kernel (FK) principle of [37]. The FV characterizes
data samples of varying sizes by their deviation from a gener-
ative model, in this case a Gaussian Mixture Model (GMM).
It does so by computing the gradients of the sample’s log-
likelihood w.r.t. the model parameters (i.e., weight, mean and
covariance). FV can be viewed as a generalization of the BoV
as the histogram is closely related to the derivative w.r.t. the
weight. Furthermore, it was shown in [37] that, when the label
is included as a latent variable of the generative model, the FK
is asymptotically as good as the maximum a posteriori (MAP)
decision rule for this model. The FV representation is optimal
and sample size independent, this makes it a natural choice for
representing point cloud data.

In the context of image classification, the combination of
FVs and DNNs was already considered [38], [39]. A network
composed of Fisher layers was suggested in [38]. Each layer
performs semi-local FV encoding (on dense handcrafted fea-
tures) followed by a dimensionality reduction, spatial stacking,
and normalization. A network composed of unsupervised and
supervised layers was proposed in [39]. The unsupervised
layers calculate features, FVs, and reduce their dimension.
They are followed by supervised fully connected layers, trained
with back propagation.

The proposed 3DmFV shares some properties with the
representation types above. Like the volumetric approach, it
is based on a grid, but not a grid of voxels. It thus maintains
the grid structure, which makes it a convenient input to a Con-
vNet, but it suffers less from quantization. Like the PointNet
approach, its features are symmetric functions, making them
order and structure independent. The architecture we propose,
like that of [39], combines unsupervised and supervised layers.
However, it relies on the spatial properties of point clouds,
which enables the use of ConvNets, substantially improving
its performance.
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III. THE 3DMFV-NET

The proposed 3DmFV-Net classification architecture con-
sists of two main modules. The first converts an input point
cloud to the 3D modified Fisher vector (3DmFV) representa-
tion and the second processes it in a CNN architecture. These
main modules are illustrated in Figure 1 and described below.

A. Describing point clouds with Fisher vectors
The proposed representation builds on the well-known

Fisher vector representation. We start by formally describing
the Fisher vectors (following the formulations and notation of
[7]) in the context of 3D points, and then discuss some of their
properties that lead to the proposed generalization and make
them attractive as input to deep networks.

The Fisher vector is based on the likelihood of a set of
vectors associated with a Gaussian Mixture model (GMM).
Let X = {pt ∈ R3, t = 1, ...T} be the set of 3D points (the
point cloud), where T denotes the number of points in the
set. Let λ be the set of parameters of a K component GMM
λ = {(wk, µk,Σk), k = 1, ...K}, where wk, µk,Σk are the
mixture weight, expected value, and covariance matrix of k-th
Gaussian. The likelihood of a single 3D point (or vector) p
associated with the k-th Gaussian density is

uk(p) =
1

(2π)3/2|Σk|1/2
exp

{
−1

2
(p− µk)′Σ−1k (p− µk)

}
.

(1)

The likelihood of a single point associated with the GMM
density is therefore:

uλ(p) =
K∑
k=1

wkuk(p). (2)

Given a specific GMM, and under the common indepen-
dence assumption, the Fisher vector, GX

λ , may be written as
the sum of normalized gradient statistics, computed here for
each point pt:

GX
λ =

T∑
t=1

Lλ∇λ log uλ(pt), (3)

where Lλ is the square root of the inverse Fisher Information
Matrix. The following change of variables, from {wk} to {αk},
ensures that uλ(x) is a valid distribution and simplifies the
gradient calculation [40]:

wk =
exp(αk)∑K
j=1 exp(αj)

. (4)

The soft assignment of point pt to Gaussian k is given by:

γt(k) =
wkuk(pt)∑K
j=1 wjuj(pt)

. (5)

The normalized gradient components may be written explicitly
as:

GX
αk

=
1
√
wk

T∑
t=1

(γt(k)− wk), (6)

GX
µk

=
1
√
wk

T∑
t=1

γt(k)

(
pt − µk
σk

)
, (7)

GX
σk

=
1√
2wk

T∑
t=1

γt(k)

[
(pt − µk)2

σ2
k

− 1

]
. (8)

These expressions include the normalization by Lλ under the
assumption that γt(k) (the point assignment distribution) is
approximately sharply peaked [7]. For grid uniformity reasons,
discussed in Section III-D, we adopt the common practice and
work with diagonal covariance matrices. The Fisher vector is
formed by concatenating all of these components:

GX
FVλ

=
(
GX
α1
, ...,GX

αk
,GX
µ1

′
, ...,GX

µk

′
,GX
σ1

′
, ...,GX

σk

′)
. (9)

To avoid the dependence on the number of points, the resulting
FV is normalized also by the sample size T [7]:

GX
FVλ
← 1

T
GX
FVλ

. (10)

See [7] for derivations, efficient implementation, and more
details.

B. Advantages of Fisher vectors as inputs to DNNs

A Fisher vector, representing a point set, may be used as
an input to a DNN. It is a fixed size representation of a
possibly variable number of points in the cloud. Its components
are normalized sums of functions of the individual points.
Therefore, FV representation of a point set is invariant to order,
structure, and sample size.

Using a vector of non-learned features instead of the raw
data goes against the common wisdom of deep neural network
users since learned features, obtained by end to end training,
are supposed to be optimal. Non-learned features choose
specific data properties and may lose important characteristics.
This is true especially when the feature extraction involves
discretization, as is the case with voxel based representation.
We argue, however, that the Fisher vector representation, being
continuous on the point set, suffers less from this disadvantage.
We shall give three arguments in favor of this claim.
a. Equation counting argument - Consider a K component
GMM. A set of T points, characterized by 3T scalar coor-
dinates, is represented using 7K components of the Fisher
vector, every one of which is a continuous function of the 3T
variables. Can we find another point set associated with the
same Fisher components? We argue that for T < 7K/3, the
set of equations specifying unknown points from known Fisher
components is over-determined and that it is likely that the
only solution, up to point permutation, is the original point set.
While this equation counting argument is not a rigorous proof,
such claims are common for sets of polynomial equations
and for points in general position. If the solution is indeed
unique, then the Fisher representation is lossless and using it
is equivalent to using the raw point set itself.
b. Reconstructing the represented point structure in sim-
plified, isolated cases
b.1 A single Gaussian representing a single point - Here,
T = 1. By the sharply peaked γt(k) assumption, there is
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Fig. 1. 3DmFV-Net architecture

only one Gaussian for which γt(k) = 1. Inserting its FV
components in Eq. 7 provides the point location:

p1 = σkG
X
µk

+ µk. (11)

b.2 A single Gaussian representing multiple points on one
plane - We now show that, given a set of points sampled
on a plane, it is possible to reconstruct a plane from the
FV representing the points. The plane equation is n̂T p = ρ,
where n̂ = (a, b, c)T is the unit normal to the plane and
ρ is its distance from the origin. Using the assumption that
γt(k) is approximately sharply peaked [7], we consider the k-
th Gaussian and the T points for which γt(k) ≈ 1. For this
Gaussian, eq. 7 is simplified to:

GX
µ =

1

σ
√
w

T∑
t=1

(pt − µ). (12)

Changing the coordinate system to x′y′z′, for which the origin
is at the Gaussian center and an axis x′ coincides with n̂, leads
to the following expression for the plane parameters:

a =
Gµx
‖Gµ‖

, b =
Gµy
‖Gµ‖

, c =
Gµz
‖Gµ‖

, ρ = σ ‖Gµ‖
√
w (13)

Objects are often approximately polyhedral, with each facet
having at least one close Gaussian for which only this facet
is close. This implies that such models may be reconstructed
from the FV even for very large T .
c. Point cloud reconstruction from FV representation using
a deep decoder - A direct expression for reconstructing a point
cloud from its FV representation is not available for K > 1.
For illustration, we show now such a reconstruction obtained
with a deep decoder, taking FV as an input and providing a
point cloud. We consider a special FV, associated with a GMM
with Gaussian centered on a grid; see Section III-D below. The
decoder architecture is identical to the convolutional part of the
classification network presented in Section III-E followed by
two fully connected layers: FC(T ),FC(3T ). The loss function
between the original and the reconstructed point sets, S1 and
S2, should be invariant to point order. We use a loss function
that is the sum of Chamfer distance and the Earth mover’s
distance, which were used (separately) in [41]. Figure 2 shows
a qualitative comparison between the original point cloud
and the reconstructed point cloud. It shows that the decoder
captured the overall shape while not positioning the points
exactly in their original position.

Fig. 2. Point cloud reconstruction from FV representation using a deep
decoder. The original (left), and the reconstructed point cloud (right).

C. Generalizing Fisher vectors to 3D modified Fisher vectors

We propose to generalize the FV along two directions:
Choice of the mixture model - Originally, the mixture

model was defined as a maximum likelihood model. This
makes the model optimally adapted to the training data and
gives the Fisher representation of each Gaussian the nice
property of being sensitive only to the deviation from the
average training data. It is not the only valid option, however,
and not a good choice if we prefer to maintain a grid structure.
Therefore, in the proposed generalization we shall use other
mixture models that rely on Gaussian grids.

Choice of the symmetric function - As apparent from
eq. (3), the components of the Fisher vector are sums over
all input points, regardless of their order and any structure
they create. They are symmetric in the sense proposed in [30]
and are therefore adequate for representing the orderless and
structureless set of points. Note also that any other symmetric
function, applied over the summands in eq. (3), would also
induce a vector that can represent orderless sets. We will
propose such functions and use them instead of or in addition
to the Fisher vector sums.

D. The proposed 3DmFV generalization

Changing the mixture model - For the underlying density
model, we use a mixture of Gaussians with Gaussian centers
(µk) on a uniform 3D m × m × m grid. Such Gaussians
induce a Fisher vector that preserves the point set structure: the
presence of points in a specific 3D location would significantly
influence only some, pre-known, Fisher components. The other
GMM parameters, weight and covariance, are common to all
Gaussians. The weights are selected as wk = 1

K and the
covariance matrix as Σk = σkI with σk = 1

m . All points
are contained in the unit sphere. The uniformity is essential for
shared weight (convolutional) filtering. The size of the mixture
model is moderate and ranges from m = 3 to 9.

The proposed uniform model is not as effective as the maxi-
mum likelihood model for representing the distribution of point
clouds. Recall, however, that the GMM does not represent a
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specific model or a specific class but rather the average model,
which is much closer to uniform. The inaccuracy is more than
compensated for by the power of the convolutional network, as
we shall see in the comparison between the different models.

Changing/Adding other symmetric functions - For Fisher
vectors, the sum is used as a symmetric function. While the
sum is asymptotically optimal, it does not give full information
about the input points for finite point sets. For small point
sets the Fisher vectors may be invertible, as suggested above,
implying that the FVs implicitly carry the full information
about the set. For the practical case of large finite point
sets, we propose to add information. To maintain the order
independence, other features should be symmetric as well.

We experimented with several options for additional sym-
metric functions, and eventually chose the maximum and
minimum functions. Note that the maximum was also used
in [30] as a single summarizing feature for each of the learned
features. Thus, the components of the proposed generalized
vector, denoted 3DmFV, are given in eq. 14 and obtained
as follows: each component is either a sum, max, or min
function, evaluated on the set of one gradient component.
In our experiments we found that partial, more compact,
representations (especially those focusing on the minimum
and maximum function) may lead to improved accuracy, and
we describe them as well. However, we also found that the
minimal weight derivative is always a constant and omitted this
specific function. The minimal value associated with a specific
Gaussian corresponds to the farthest point and its γt(k) value,
which is 0 in practice.

GX
3DmFVλ

=


∑T
t=1 Lλ∇λ log uλ(pt)

∣∣∣
λ=α,µ,σ

maxt(Lλ∇λ log uλ(pt)|λ=α,µ,σ
mint(Lλ∇λ log uλ(pt))|λ=µ,σ

 (14)

For K = m3 Gaussians, there are therefore 20 × K
components in the 3DmFV representation (20 = 3(3+3)+2).
The 3DmFV is best visualized as a 20 ×K matrix. Figure 3
depicts a point cloud (right) and its 3DmFV representation
(m = 5) as a color coded image (left). Each column of the
image represents a single Gaussian in a 5×5×5 Gaussian grid.
Zero values are white whereas positive and negative values
correspond respectively to the red and blue gradients. Note
that the representation lends itself to intuitive interpretation.
For example, many columns are white, except for the first two
top entries. These correspond to Gaussians that do not have
model points near them; see eq. 6.
Normalization - Following [36] (Sec. 2.3), we applied two
normalizations on the 3DmFV representation: First, we applied
an element-wise signed square root normalization, and then
an L2 normalization over all 20 vectors corresponding to all
Gaussians and a single feature λi. This last normalization
equalizes the derivatives with respect to different parameters.
Time complexity - Given the above operations which define
the 3DmFV representation, its theoretical time complexity is
linear w.r.t the number of Gaussians and the number of points,
i.e. it is O(KT ).

Fig. 3. 3DmFV representation (left) and the corresponding point cloud (right)

Inception: [c1,  c2,  N]

CNN: 
[1 x 1 x 1 x N]

CNN: 
[1 x 1 x 1 x N]

CNN: 
[c1 x c1 x c1 x N/2]

Avg. pool: 
[(c1 x c1 x c1 ), 1]

CNN: 
[c2 x c2 x c2 x N/2]

Concatenate

Input: [m x m x m x L]

Output: [m x m x m x 3N]

Fig. 4. Inception module used in 3DmFV-Net

E. 3DmFV-Net classification architecture

The proposed network receives a point cloud and converts
it to a 3DmFV representation on a grid. The main parts of
the network consist of an Inception module [42], visualized in
Figure 4, maxpooling layers, and finally four fully connected
layers. The network output consists of classification scores; see
Figure 1. The network is trained using back propagation and
standard softmax cross-entropy loss with batch normalization
after every layer and dropout after each fully connected layer.
The network has approximately 4.6M trained parameters, the
majority of which are between the last maxpooling layer and
the first fully connected layer.

IV. EXPERIMENTS

We first evaluate the classification performance of our pro-
posed 3DmFV-Net and compare it to previous approaches. We
then evaluate several variants of the proposed representation.
Finally, we analyze our method’s robustness to noise.

A. Implementation

Datasets - We evaluate 3DmFV-Net classification algorithm
on data from two different domains:

1) CAD data - ModelNet: The ModelNet40 dataset [4]
consists of 12311 CAD models from 40 object categories
split into 9843 for training and 2468 for testing. The data,
represented as triangle mesh, is sampled as described in
[30] in order to generate point clouds. We also exper-
imented with the ModelNet10 dataset, which contains
4899 CAD models from 10 object classes split into 3991
for training and 908 for testing.

2) LiDAR data - Sydney Urban Objects: The Sydney Ur-
ban Objects dataset1 contains Velodyne LiDAR scans

1http://www.acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.shtml
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TABLE I
CLASSIFICATION ACCURACY ON MODELNET40 AND MODELNET10

Method ModelNet10 Modelnet40
MVCNN [43] - 90.1
3DShapeNets [4] 83.5 77.32
VoxNet [3] 92.0 83.0
OctNet [21] 90.9 86.5
O-CNN [22] - 89.9
VRN [20] 93.6 91.33
VRN ensemble [20] 97.14 95.54
FusionNet [44] 93.1 90.8
PointNet [30] - 89.2a

PointNet++ [31] - 90.7a

Kd-network [32] 94.0b / 93.3a 91.8b / 90.6a

3DmFV+VoxNet 94.3 88.5c

Our 3DmFV-Net 95.2ac 91.6c/91.4a

*The point based methods use a1024,b32768, c2048 points.

of 14 object classes with a total of 588 objects over
four train/test splits. The classes are highly imbalanced,
therefore we report the average F1 score, weighted by
class support.

Training details: Unless otherwise specified, the 3DmFV-Net
(Figure 1) was trained using an Adam optimizer with a learning
rate of 0.001 with a decay of 0.7 every 20 epochs. The point
cloud (of 2K points) is centered around the origin and scaled
to fit a cube of edge length 2. Data is augmented using random
anisotropic scaling (range: [0.66, 1.5]) and random translation
(range: [−0.2, 0.2]) in each axis, similarly to [32]. We used
Tensorflow on a NVIDIA Titan Xp GPU. Training took ∼ 7h.

B. Classification performance

Table I compares 3DmFV-Net with previous approaches on
the ModelNet40 and Modelnet10 datasets. The comparison
metric is instance accuracy. Clearly, the proposed method wins
over most methods. It is comparable to the Kd-network, which
requires a much larger input (∼ 32K points) and is not very
robust to rotations and noise [32]. It is less accurate only than
the more complex VRN ensemble method [20], which operates
on voxelized input and averages 6 models, each trained for 6
days. However, it is slightly better than a single VRN model.
Note also that direct comparison is somewhat unfair because,
unlike the voxelized description, point based methods (like
ours) do not have direct access to the mesh.

We also tested a combination of the 3DmFV representation
(m = 8) with the simpler convolutional network that mim-
ics the one used in VoxNet [3]. Although this combination
(denoted 3DmFV+VoxNet) uses a lower resolution grid than
VoxNet (323 voxels), it is more accurate. Thus, the perfor-
mance boost of the 3DmFV-Net may be attributed to both the
representation and the architecture.

Table II compares the average F1 score of 3DmFV-Net to
Voxnet [3] and other descriptor based SVM classifiers [15],
[16] on the Sydney dataset. We also tested PointNet on it.
This required some adaptation to enable PointNets publicly
available code to accept point clouds with varying number
of points. It shows that without any data augmentations or
voting strategies during training, as suggested by VoxNet, we
achieve competitive results. When rotating the input models at

TABLE II
CLASSIFICATION PERFORMANCE ON SYDNEY DATASET

Method F1 score
Triangle+SVM [16] 0.67
GBH+SVM [15] 0.71
VoxNet [3] 0.72
PointNet [30] 0.7
3DmFV-Net (no aug.) 0.73
3DmFV-Net (rotation aug.) 0.76

TABLE III
F1 SCORES PER-CLASS

class 4wd bldg. bus car ped. pillar pole tfc.
light

tfc.
sign tree truck trunk ute van

num.
ins. 21 20 16 88 152 20 21 47 51 34 12 55 16 35

F1 0.22 0.64 0.21 0.81 0.99 0.84 0.68 0.74 0.78 0.82 0.27 0.74 0.31 0.57

train time by 360/n degrees, where n = 4 the performance
increases significantly. Table III shows the F1 score per class
alongside the number of instances in each class. It shows
that the score improves when more instances are available for
training (e.g. pedestrian and car) but may also be high when
the class is of unique shape.

C. Testing variations of the 3DmFV representation

We now test partial, more compact variants of the pro-
posed representations. The first variant is the Fisher vectors.
The 3DmFV generalization of FV uses different symmet-
ric functions (and not only the sum, as in FV), and dif-
ferent GMMs. We considered the combinations of several
symmetric functions, with GMMs obtained either from the
maximum likelihood (ML) optimization obtained by the ex-
pectation maximization (EM) algorithm or from Gaussians
on a 3D 5×5×5 grid. The tested symmetric functions in-
clude maximum (3DmFV-max), minimum (3DmFV-min), and
sum of squares (3DmFV-ss). We tested these combinations
with a nonlinear classifier (4 fully connected layers of sizes
(1024, 256, 128, 40) with ReLU activation). For reference to
the original FVs, we tested the ML GMM with a linear classi-
fier as well. All models were represented by 1024 points. Table
IV reveals that the 3DmFV representation always wins over the
FV representation, and that using grid GMM is comparable
to the optimal ML GMM. Using maximum or minimum as
a symmetric function yields comparable results with fewer
parameters. Note that with the convolutional network, possible
only with grid GMM, the accuracy is much higher (Table I).

Resolution and standard deviation We found that accuracy
increases with both grid size (m) and the number of points

TABLE IV
CLASSIFICATION ACCURACY OF 3DMFV VARIATIONS

Rep. ML +
LinCls

ML +
NonLinCls

Grid +
NonLinCls

FV 58.4 82.8 84.5
3DmFV-ss 58.8 85.0 84.4

3DmFV-min 67.7 87.7 86.1
3DmFV-max 68.6 87.4 85.3

3DmFV 76.8 88.0 87.7
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Fig. 5. Effects of grid resolution and number of input points on the evaluation
accuracy.

representing the model; see Figure 5. Note that performance
saturates in both parameters. PointNet [30] seems to be more
sensitive to the number of points. This is probably because
their descriptors are learned as well. The architecture is slightly
different for each grid size. We also found that the performance
is insensitive to the selection of standard deviation as long as
it is not too small. In the case of small σ, most points do not
contribute to any Gaussian, rendering the FV representation
empty.

D. Time performance

All time measurements were averaged over 2448 point
clouds divided into batches of 16 samples on a Titan Xp
GPU. We start with the computation time of the 3DmFV
representation, and show empirically in Figure 6 (left), a linear
computation time increase w.r.t the number of points for each
different grid size K = 33, 53, 83. As expected, we also found
that the run time is linear in the number of Gaussians. Next we
measure the total inference time and compare with other meth-
ods. The results are shown in Figure 6 (right). Note that the
total inference time includes the representation computation
time which is the only contributor to the time increase since
the network classification inference time is approximately
constant. Also note that VoxNet time was measured on a 323

voxel grid without factoring the voxelization. It is reported
as a constant reference since it does not operate directly on
point clouds. The results show a trade-off between accuracy
and speed. Despite the computation overhead of the 3DmFV
representation, it operates in real-time and scales linearly while
allowing the flexibility of adjusting the grid size based on
accuracy/speed requirements.

These results makes 3DmFV-Net an appealing choice for
both sparse and dense point clouds since it provides high
accuracy for low density point clouds, and fast run-time for
higher density point clouds. For faster speeds, a high density
cloud may be down sampled with a small impact on accuracy.

E. Robustness evaluation

To simulate real-world point cloud classification challenges,
we tested 3DmFV-Net’s robustness on the Modelnet40 dataset
under several types of noise:
Uniform point deletion - randomly deleting points is equiva-
lent to classifying clouds that are smaller than those used for
training.
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Focused region point deletion - selecting a random point and
deleting its closest points (the number of points is defined by
a given ratio), simulating occlusions.
Outlier points - adding uniformly distributed points.
Perturbation noise - adding small translations, with a bounded
Gaussian magnitude, independently to all points, simulating
measurement inaccuracy.
Random rotation - randomly rotating the point cloud w.r.t. the
global reference frame, simulating the unknown orientation of
a scanned object.

The results (Figure 7) demonstrate that the proposed ap-
proach is inherently robust to perturbation noise and uniform
point deletions. For the other types of data corruptions, training
the classifiers with any of these types of noise made it robust
to them.

V. CONCLUSION

In this work, we propose a new 3D point cloud representa-
tion, the 3D modified Fisher vector. It preserves the raw point
cloud data while using a grid for structure. This allows the use
of the proposed CNN architecture (3DmFV-Net) for efficient
and accurate object classification for 3D sensor data in real-
time applications such as autonomous driving or 6DOF pose
estimation for robotic grasping.

Representing data by non-learned features goes against the
deep network principle that the best performance is obtained
only by learning all components of the classifier using an
end-to-end optimization. The proposed representation achieves
state of the art results relative to all methods that use point
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cloud input, and therefore provides evidence that end-to-end
learning is not always essential.
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