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Abstract—Computer vision attention processes assign variable-hypothesized importance to different parts of the visual input and

direct the allocation of computational resources. This nonuniform allocation might help accelerate the image analysis process. This

paper proposes a new bottom-up attention mechanism. Rather than taking the traditional approach, which tries to model human

attention, we propose a validated stochastic model to estimate the probability that an image part is of interest. We refer to this

probability as saliency and thus specify saliency in a mathematically well-defined sense. The model quantifies several intuitive

observations, such as the greater likelihood of correspondence between visually similar image regions and the likelihood that only a

few of interesting objects will be present in the scene. The latter observation, which implies that such objects are (relaxed) global

exceptions, replaces the traditional preference for local contrast. The algorithm starts with a rough preattentive segmentation and then

uses a graphical model approximation to efficiently reveal which segments are more likely to be of interest. Experiments on natural

scenes containing a variety of objects demonstrate the proposed method and show its advantages over previous approaches.

Index Terms—Computer vision, scene analysis, similarity measures, performance evaluation of algorithms and systems, object

recognition, visual search, attention.

Ç

1 INTRODUCTION

IMAGE analysis processes often scan the image exhaus-
tively, looking for familiar objects of different location

and size. This process can be made much more efficient if
an attention mechanism assigns priorities to different image
parts and thus directs the analysis process to examine more
interesting locations first. The highly effective attention
mechanisms of the human visual system have been studied
extensively from the psychophysical and physiological
points of view. Interestingly, it was found that effective
attention is possible even in the absence of any information
about the sought for entities.

Neisser [33] suggested that human visual processing is

divided into preattentive and attentive stages. The first

consists of parallel processes that simultaneously operate on

large portions of the visual field and form the units to which

attention may then be directed. The second stage consists of

a focused processing effort applied to a limited portion of

the visual field. Triesman and Gelade [52] suggested the

feature integration theory (FIT). Consistent with physiology

findings is their suggestion that, in the preattentive stage,

the visual input is represented by separate retinotopic maps

for each of the basic visual attributes. According to their

hypothesis, the binding of the features (such as color and

shape) requires focal attention. Initially, they suggested that

there is a dichotomy between visual search tasks in which

the target is located immediately (pop-out) and search tasks
that required scanning. Much evidence (e.g., [31], [15], or
the survey [62]) was found, however, against this dichot-
omy, which is nowadays considered outdated, and the FIT
was updated accordingly [51]. Many computational models
(e.g., [28], [61], [53], [26]) followed other principles of the
FIT and suggested methods for grading the conspicuous-
ness of each spatial location in a viewed scene using the
saliency map concept. Itti et al. [26], for instance, following
Koch and Ullman [28], have suggested such a bottom-up
computational model. Given an input image, separate
feature maps of color, intensity, and orientation in different
scales are extracted using linear filtering. Local spatial
contrast is estimated for each feature at each location,
providing a separate conspicuity map for each feature.
These are combined to form one saliency map that guides
the attention focus. Using winner-take-all and inhibition-of-
return mechanisms, attention is drawn to different locations
in descending priority (saliency) order.

Human attentional preferences are also directed by top-
down information, which might include prior world
knowledge or task-driven information [63]. Combining
top-down information, when available, in attention models
improves their predictive abilities (e.g., [61], [32], [22]).
Surprisingly, however, it was shown that bottom-up
information alone might lead to fixation paths that are
highly correlated with those of humans (e.g., [35], [9]).

Note that the locations to which attention is directed may
be specified, in principle, at every spatial point of the
retinotopic saliency map. Methods that do so are also,
therefore, referred to as space-based or feature-based. For any
salient location, attention may be focused on a region
around it, as suggested by the spot light [39] or the zoom-lens
[21] metaphors. Note that this region may contain only one
object, a part of an object, or several objects.
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An alternative approach suggests that human visual
attention is object-based. That is, the spatial region of
attention is not of fixed shape but rather adapted to the
perceived object [18], [44]. This approach implies that the
decision as to where to place one’s attention follows
perceptual grouping processes. The term “object” should
be specified with care in this context. It is unlikely, for
example, that an almost perfect grouping process, in which
the perceived scene is divided into semantically meaningful
objects such as cars or people, precedes the attention
process. Several psychological studies (e.g., [58]) provide
evidence that “objects” are specified by simple grouping
processes related to basic Gestalt laws [59] such as
proximity, similarity, and uniform connectedness [36]. To
avoid confusion between a model that relies on semanti-
cally meaningful segmentation and one that relies on
relatively weak grouping cues, we sometimes refer to the
latter as region-based.

In computer vision, Itti et al.’s model is currently
considered the dominant bottom-up saliency method and
many variations of it have been proposed; see, e.g., [17],
where a more consistent use of scale is provided. Bottom-up
attention mechanisms were found useful in computer vision
for recognition (e.g., [46], [23], [42]) and for learning [42].

As described above, the vast majority of attention models
identify saliency with local exception. That is, the saliency
value at each location is essentially the local contrast in one
feature or more. These models do not check uniqueness in
the context of the whole scene. Many instances from the
same category appearing in one image can be considered
salient if each contrasts with the background, while a single
instance of another category can be considered less salient if
it contrasts less with the background. Therefore, while this
approach may be biologically plausible, it is suboptimal for
computer vision. We propose an alternative saliency
method, based on a (validated) stochastic model. The
proposed extended saliency (or Esaliency) algorithm differs
significantly from previous methods in its motivation, its
methodology, and its end result. Rather than trying to build
a model explaining human attention, we propose to use a
validated stochastic model to estimate the probability that
an image part is of interest. We refer to this probability as
saliency, and thus, specify saliency in a mathematically
well-defined sense. Usually saliency values have only a
relative meaning. That is, a high saliency value implies that
the corresponding location is more likely to be of interest
than another location associated with a lower saliency
value. Using our approach, the (E)saliency value is mean-
ingful in and of itself. Also, note that, with this saliency, the
common practice of scanning the candidates for attention
with decreasing saliency order is not only a very reasonable
heuristic, but also an optimal strategy for minimizing the
expected scanning time until a object of interest is found.

The proposed Esaliency method differs from most
previous methods in several other ways. First, it is region-
based, as it begins with a rough preattentive grouping
process. The uniform regions that are suggested by the
grouping process are used as initial candidates for atten-
tion. Second, the judgment as to whether some part of the
image is salient is context-sensitive and global. If, for

example, a locally salient object appears many times in the
image, its saliency is reduced. Finally, the (local) uniqueness
assumption is replaced by a preference for a small number
of similar or dissimilar salient regions that may be located
near to or far away from one another. This is compatible
with real scenes, which may contain multiple interesting
objects (of one or more categories).

Intuitively, we know that objects from the same category
are likely to be visually similar. Therefore, two visually
similar candidates are likely to both be associated with objects
of interest or to both be associated with noninteresting
objects. In a stochastic context, this intuition is quantified by
the second order statistics (correlation) between the candi-
dates’ labels. The first order statistics is set using the common
expectation for a relatively small number of interesting
objects in a scene. A graphical model that approximately
satisfies these constraints is constructed, allowing the
hypotheses for salient locations with the highest likelihoods
to be efficiently revealed. In our implementation, the
algorithm relies on a simple method of candidate character-
ization and on a simple similarity measure, and is therefore
fast. Yet, we show that using the fixation order specified by
the descending saliency makes the whole process of object
recognition, or object detection, much more efficient.

As was done in previous computer vision attention
studies (e.g., [26], [55]), we focus here on a specific but wide
context: images where the interesting occurrences take up
only a small fraction of the image. In this context, the
attention task is often denoted visual search, and the goal is
to find the (small) image regions where the important
objects lie. Attention processes can deal with other contexts
where, for example, a single object of interest takes up a
large fraction of the image. Then, however, the visual
system task is not to find the object but rather to analyze it,
and the attention is heavily knowledge-dependent. We do
not consider the latter context here.

The computer vision community uses the term saliency,
borrowed from cognitive psychology, for two different
tasks. Attention-motivated saliency, considered, e.g., in [26],
[9], [45] and here, aims to detect promising, high-priority
image parts on which high-level processes focus their
resources, thus achieving more efficient analysis. The term
saliency is also used sometimes in the context of local
invariant features (e.g., [27], [43], [24]). These may serve as a
partial description of the image, or at least as an “adaptive
coordinate system.” Local feature detectors aim to find a
relatively large number of points (or small regions), whose
locations, relative to the objects in the scene, are stable
under pose and illumination changes. The two tasks benefit
from different properties of image exceptions. For attention-
motivated saliency, exceptions turn out to be a reliable
indication of significant scene objects. For local feature
detection, local exceptions carry more information than
other points, and more importantly, are usually stable
under imaging changes. Unlike attention-motivated sal-
iency, local feature detection is tuned to provide a large
number (typically several hundreds) of detections in an
image. Every detection corresponds to a small part of the
object, and it is typical for many to correspond to the same
object. Indeed, the local feature detection maps are
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completely different from attention-motivated saliency
maps. Therefore, we see local feature detections as only
weakly relevant to the approach described here. The
algorithm proposed here is very different from previous
algorithms proposed for both tasks. It could also be used, in
principle, for local feature detection. But, it is expected to
function nonoptimally in that context because the weak
global exceptions that we look for are not necessarily
desirable. See [57], however, for a use of global exception to
accelerate the correspondence process.

We are aware of only a few papers related to the region-
based attention approach proposed here. Most attention
mechanisms are space-based. A computer vision implemen-
tation of Duncan’s [18] object-based attention model was
suggested in [49]. To be effective, however, it requires high-
quality hierarchial segmentation (and indeed uses in the
experiments, human segmentations), and therefore, seems
impractical for attention of complex natural scenes. A
region-based approach relying on local saliency was
suggested in [29].

Several space-based studies propose alternative methods
for computing global exceptions. The methods in [50] and [9]
estimate distributions corresponding to the image content
and search for exceptional locations that correspond to
content of low likelihood. In [9], for instance, the distribution
of ICA coefficients across the image is estimated by a
histogram. The coefficient’s self-information is set higher
when its value is less common. The saliency at an image point
is specified as the sum of self-information values over all
coefficients corresponding to that location. Experimentally,
the authors show their model to be comparable with Itti
et al.’s model for predicting human eye fixation paths. One
disadvantage of this approach, in our opinion, is its
insensitivity to the degree of similarity between candidates:
Note, for example, that the self-information of a red element
among pink distractors is either zero or similar to the self-
information of the same red element among green distractors,
depending on the histogram binning.

A related stochastic model was developed in [5] for a
supervised search mechanism, optimizing the interaction
between search and recognition. The problem considered in
[5] is different from the Esaliency algorithm proposed here,
which is purely bottom-up, and, like previous algorithms of
this type (e.g., [26]), neither assumes the availability of an
object recognition oracle nor changes the saliencies after
they are set. The image (or video) analysis approach [8]
considers a region noninteresting if it is similar to another
image region. This principle is close to our approach.
However, it differs from ours in several important ways:
First, it does not rely on an explicit stochastic model of the
objects’ identities. Furthermore, it does not allow for two (or
a few) similar items that together are globally unique to be
considered salient. Finally, it relies on a relatively costly,
part-based similarity evaluation. Therefore, while it gives
very good results as an analysis tool, it does not seem useful
as a quick prerecognition attention mechanism.

We present our basic assumptions and the stochastic
model in Section 2, and then, describe the Esaliency
algorithm in Section 3. In Section 4, we describe experiments
that test the algorithm on synthetic data and on a few data
sets of natural scenes. We then compare its results to those of

a feature-based attention method [26], test a few possible
extensions to the basic algorithm, compare Esaliency’s
results with human eye fixations, and test the benefits of
using Esaliency for the task of pedestrian detection. Some
future research directions are suggested in Section 5. A short
version of this work, using a more complex, substantially
different algorithm, was presented in [4].

2 FRAMEWORK AND UNDERLYING ASSUMPTIONS

The attention process proposed in this paper is region-
based. That is, it builds on a preattentive grouping process,
dividing the image into segments, which are the candidates
for attention. The attention process associates each candi-
date with a quantitatively meaningful saliency value, which
is an estimate of its likelihood to be a target.

The segmentation process need not be accurate and can
actually be very rough, resulting in fragmented objects. In
fact, even with the best available segmentation algorithms,
setting the parameters for oversegmentation is the only
way to ensure, with high probability, that most objects are
not split between segments. A (segment) candidate is
denoted as “target” if it corresponds to an object of interest
or to a part of it. Since our model is bottom-up and no
specific task is predefined, an “interesting object” is
specified by common human knowledge. This is similar
to the meaning suggested in [37], where the Internet users
selected “the most interesting points in various scenes,”
without further guidance or goal. We consider realistic
scenes where several objects of interest may be present.
This, and the inevitable object fragmentation, imply that
several candidates may be targets.

The dominant approaches to saliency (largely based on
feature integration theory and the implied center-surround
mechanisms) are based on the search for a local exception.
This approach may fail in two ways: First, the presence of
several targets in nearby locations might reduce the
response to each and cause the attention mechanism to
miss them. Moreover, a large set of similar objects (or even
just regions), which are, by definition, nonexceptions, might
be falsely detected as salient if they are associated with a
high local contrast. Then, the true exceptions, associated
with a lower contrast, will be missed. For instance, consider
the simple synthetic case of 10 red disks and one yellow
disk scattered over a white background. Although it is
obvious that the yellow disk is the exception, locally salient
searching models may suggest each of the red disks as more
salient as they contrast more with the background.

Our approach, denoted as Extended saliency (Esaliency),
seeks relaxed global exceptions; it prefers objects that
belong to small groups of similar objects that are relatively
dissimilar to the rest of the image. It would recognize the
yellow exception in the colored disks example above.
Moreover, if, for instance, there were three yellow disks,
each of them would still be recognized as the most “visit-
worthy” item in that display.

2.1 Stochastic Modeling of Target-Nontarget Labels

Our approach to the design of the saliency algorithm is to
quantify the target-nontarget labels of the candidates in a
probabilistic model, which would eventually identify the
saliency of a candidate with its probability to be a target.
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Formally, let ðc1; . . . ; cnÞ denote the candidates for attention.
Taking a stochastic approach, we consider the labels of the
candidates l1; . . . ; ln as binary random variables, which take
value 1 if the candidate is a target and 0 if it is a nontarget.
Estimating the probability P ðliÞ ¼ pðli ¼ 1Þ that the candi-
date is a target, is the goal of this paper. To estimate this
probability, we take an indirect approach and start with the
corresponding joint distribution. Let �l ¼ ðl1; . . . ; lnÞ denote a
vector of candidate labels, and L ¼ f�l ¼ ðl1; . . . ; lnÞ; l1; . . . ;
ln 2 f0; 1gg be the set of all 2n label vectors. Let pð�lÞ be a
probability distribution function on L.

We shall now make some observations which constrain
the distribution pð�lÞ. Then, in Section 3, we propose a
specific distribution approximating these constraints, and a
computationally efficient way for estimating the probability
of each candidate to be a target.

2.2 Underlying Observations

To construct the Esaliency process, we combine the
following three related but different observations, which
we elaborate on and quantify in the rest of this section:

Observation 1. The number of target candidates is usually
small. The number of interesting objects in a scene, and
the total area that they cover, is usually small.

Observation 2. There is a correlation between visual
similarity and target-nontarget labels. Objects belong-
ing to the same category are usually all targets or all
nontargets. Candidates associated with these objects are
often visually similar. Therefore, two visually similar
candidates are likely to be both targets or both
nontargets. Note that if the candidates are dissimilar,
then, independently, every one of them may be a target
or a nontarget.

Observation 3. Natural scenes are often composed of
clustered structural units. We argue that natural images
may often be partitioned into small parts clustered in
some feature space. That is, the feature vectors char-
acterizing the parts are not uniformly distributed in the
feature space but rather concentrated in a few locations.

These observations do not hold for every scene, but they
do for many of them. We found that using them as the basis
for the proposed stochastic mechanism enabled it to direct
the attention focus on interesting objects and reject most of
the image background, even when it is highly textured.

Note that combining the two last observations implies
that every cluster is associated with candidates of the same
target/nontarget label. Also, note that adding the first one
implies that the targets are in small cluster(s).

Using these observations directly would lead to a simple
attention algorithm: Start by clustering and then choose the
smallest resulting clusters. This approach, however, has its
drawbacks: First, clustering requires some knowledge for
setting the number of clusters or the maximal cluster
diameter. Second, hard clustering methods provide a
specific partition of the data that is sometimes just a little
better than other possible partitions. Last, it is not clear how
to assign continuous saliency values, or even just priorities,
to the members of the selected small clusters and, in
particular, how the distances within the clusters and
between them influence this assignment. Our approach

avoids these difficulties by constructing a distribution on
the possible target/nontarget joint assignment, which may
be viewed as a “soft” clustering.

In the rest of this section, we provide some empirical
evidence for these (indirect) observations and quantify
them in the context of the proposed stochastic model.

2.2.1 The Number of Targets Is Usually Small

Looking at many images, we observed that the number of
interesting objects (denoted targets) in a scene and the total
area that they cover are usually small. This observation is
experimentally supported (see below) but may be also
explained as follows: When the image contains only a few
objects, they are important because they are usually the
image content (the figure-ground case). In the case where
the number of objects in the scene is large, many of them
may belong to the same category (e.g., a group of trees,
flowers, pebbles, or horses). Each of these objects is then
nonspecial and noninteresting. (Note the human attention
mechanism’s ability to efficiently filter out homogenous
distractors in an oddity search.) The number of objects that
do not belong to large groups is usually small unless the
image is unnaturally cluttered. These objects are therefore
special and considered interesting.

As discussed in Section 1, this paper (as well as other
attention studies in computer vision) focuses on the
common context where the targets take up only a small
fraction of the image. This is the case in many images of
outdoor scenes. The 156 typical images of natural scenes
taken from the University of Washington’s Ground Truth
database (UWGT database) [2] were, in our experiments,
oversegmented on the average to 306 regions. The same
images were presented to human observers, who were
asked to mark “the interesting objects in each image.” On
average, 12.3 segments per image were associated with
selected objects; this is about 4 percent of the segments.

Another example would be the MIT StreetScenes
database [7], where the (arguably) most interesting objects,
people, are indeed few and take up a small fraction of the
image. For the 852 images containing people, there are, on
average, 1.7 people (targets) per image, and the average
fraction of the area covered by them is 2.14 percent. These
examples support Observation 1.

In the stochastic context, this observation is simply
expressed as a relatively low expected value �i for every
random variable li. When no knowledge about the size,
location, and the properties of targets, nor any general
knowledge about the scene are available, the probability of
a candidate to be a target is uniformly set as �i ¼ �. In our
basic implementation of Esaliency, we set � ¼ 0:05. We
show in Section 4 that this setting is a reasonable
description of natural scenes. Moreover, we found that the
Esaliency algorithm is not sensitive to the exact value of �,
as long as it is relatively small.

The uniform setting of priors may be modified when
some candidates are preferred, due to, say, high local
saliency, or a preference for certain image locations; see
Section 4.4 for related experiments.

2.2.2 A Correlation between Visual Similarity and

Target-Nontarget Labels

According to observation 2, two visually similar candidates
are likely to both be objects of interest, from the same
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category, or likely to both be noninteresting objects. This
observation is actually quite obvious and serves as the basis
for all categorization algorithms that try to find a certain
object using visual similarity.

In this paper, the similarity between candidates is
inferred from their feature space distance. That is, every
candidate is represented as a vector of, say, texture and
color features. A short distance between the two vectors
indicates that the corresponding candidates are visually
similar. For complex object categories and different imaging
conditions, the distance between different images from the
same category is not necessarily small. Yet, we found that
this assumption still holds most of the time. Moreover, we
observed that different instances of the same category in a
single image are more similar to each other than different
instances of the same category in different images.

Let dij denote the feature-space distance between the two
vectors associated with the ith and the jth candidates. A
natural model of the dependency between the correspond-
ing two labels li; lj uses the correlation coefficients as a
descending function of dij:

�ðli; ljÞ ¼
covðli; ljÞ

varðliÞvarðljÞ
¼ �ðdijÞ; ð1Þ

where �ðdijÞ is 1 for zero feature-space distance and
approaches 0 for an increasing dij.

This dependency characterization was first proposed
and verified in [5]. In a typical (new) verification experi-
ment, we took a set of images (156 images from the UWGT
database [2]) and asked naive observers to mark the
significant objects in the scene (people, cars, etc.). We used
the segmentation, features, and the similarity measure
described in Section 4.1. The correlation coefficients
between the target-nontarget labels of such pairs as a
function of the feature-space distance is described in Fig. 1a.
Note that, as expected, the correlation is higher for similar
candidates (low feature-space distance) and decreases for
decreasing similarity. Experimenting with several natural
scene images, we found that a piecewise linear descending
function, as shown in Fig. 1b, is a good approximation of
the measured correlation-coefficient behavior for several
choices of feature-space and metrics. This dependency
model is used in all of the experiments.

2.2.3 Natural Scenes Are Often Composed of Clustered

Structural Units

We argue that segment candidates from one image are
clustered. That is, their feature vectors can be divided into

subsets so that all vectors in the same subset are close. This
is actually intuitive: Typical scenes are associated with a
limited palette of colors or textures, related to the type of
scene (e.g., urban or landscape), the season, the type of
trees, flowers, or animals in it, etc. (e.g., [54], [56]).

To demonstrate the clustering observation, we carried
out a simple experiment comparing the clustering within
specific images to the clustering within a set of different
natural images. For each image, we applied the same
segmentation and feature extraction process as in the
Esaliency algorithm implementation. This yielded a seven-
dimension feature vector for each candidate of each image
(see Section 4.1 for details).

We estimated the inclination of a given set of feature
vectors to cluster as follows: The data were clustered to a
mixture of multivariate Gaussians using the EM algorithm
[16], following the method suggested in [12]. The number of
clusters k was specified in the range of 1-10. The EM
algorithm was repeated 10 times for each k value, with
different initializations, and, for each k, the clustering
associated with the maximum likelihood was retained. For
each image, the minimum description length (MDL [41]) of
the best clustering associated with each kwas calculated, and
the clustering associated with the lowest MDL was chosen.

For this experiment, we again used the same image set
from the UWGT database [2]. The clusterings were done
first for sets of feature vectors from the same image, and
then, for similarly sized sets of feature vectors randomly
sampled from different images in the full image set. Fig. 2
describes the histograms of the best (lowest) MDL for the
two cases, as well as the histograms of the associated
number k and the log of the likelihoods corresponding to
the selected best clusterings. When the data are taken from
one image, the number of clusters is approximately
uniformly distributed across the range ½4; 10�. The like-
lihood is high and the MDL is low (compared to the second
scenario). This indicates that the mixture of a few narrow
Gaussians is a good representation of the data, i.e., the data
are clustered. Data drawn randomly from different images
are described best, on the other hand, by two to five very
wide Gaussians (usually by two), associated with a much
lower likelihood and a much higher MDL. The choice of a
relatively low number of Gaussians by the MDL analysis
means that using more Gaussians does not better explain
the data. Therefore, this clearly indicates that the data are
scattered in the feature space.1

This observation is not quantified but is used for choosing
the joint target/nontarget distribution; see Section 3.

2.3 Stochastic Modeling Discussion

The stochastic modeling suggested here is related to recent
work on statistics of natural images (see, e.g., [48]).
However, it differs from most image statistical modeling,
where all locations in the image contribute evenly to the
obtained distributions, in that it depends heavily on a
target/nontarget ground truth labeling. In a sense, it is
more related to the work on grouping cue statistics [30],

AVRAHAM AND LINDENBAUM: ESALIENCY (EXTENDED SALIENCY): MEANINGFUL ATTENTION USING STOCHASTIC IMAGE MODELING 697

Fig. 1. Label correlation versus feature-space distance. (a) Empirically
estimated using the UWGT database. (b) (Piecewise linear descending)
function used in all experiments.

1. Some of the description lengths are negative. This is acceptable
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distributions with continuous density.
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where the statistics obtained depended on a ground truth

(human) segmentation. There are differences, though, due

to the difference in the desired labeling. Consider, for

example, two objects of the same category present in the

image as two noncontiguous segments. These segments

should get the same label for attention, while for grouping,

they should get different labels.

3 THE ESALIENCY ALGORITHM

The proposed saliency algorithm is based on the stochastic

model and the observations presented in the previous

section. The algorithm is essentially a method for estimating

the probability that a candidate is a target. The Esaliency

algorithm is summarized in Fig. 3. The segmentation and

the feature selection (Steps 1 and 3) are parts of the

algorithm, but need not be the specific procedures we used

in our experiments. The features chosen should be

informative in the sense that they provide some rough but

not necessarily robust distinction between the different

types of objects in the scene. The distance (not necessarily

euclidean) between every two vectors dij, i; j ¼ 1; 2; . . . ; n, is

calculated and used to obtain �ðli; ljÞ by (1). Given the
correlation matrix, the algorithm proceeds by specifying a
distribution on the joint candidate labels using a Bayesian
network. Then, the individual probability of every candi-
date to be a target is estimated using several most probable
scene interpretations. These two components are described
in detail below.

3.1 Specifying a Joint Label Distribution as a
Bayesian Tree

The pairwise correlations, calculated from the image
similarities, together with the priors p0ðliÞ suggested in
the previous section, can now be used to specify a joint
probability distribution pð�lÞ on a binary hypothesis vector �l.

There are, in principle, many distributions satisfying any
given set of correlations (provided the covariance matrix is
positive definite). We use a simple, tree-based, Bayesian
network which takes only the strongest correlations into
account. This choice follows the third observation that the
feature vectors associated with the candidates are clustered,
rather than distributed uniformly. Together with the second
observation, this means that, for strongly clustered data, all
the labels within the cluster are strongly correlated and
labels in different clusters are independent. Therefore, the
dependence of a label of some candidate on all the other
labels may be replaced by its dependence on another label
in the same cluster.

Other distribution choices seem to have disadvantages.
The general joint Gaussian distribution seems attractive as it
is the maximum entropy distribution for the second order
statistics. However, it does not model binary random
variables and does not offer an efficient method for finding
the most likely binary assignments, which we need.
Estimating more complex distributions usually requires
higher order joint statistics between the candidates’ labels
(e.g., [13], [47], [20]), which we do not have. Finally, but no
less important, this choice has a significant computational
advantage: One possible way for revealing joint assign-
ments with high likelihood is using sampling methods such
as simulated annealing or MCMC. However, they converge
too slowly for an attention process. As we shall see, an
efficient computation is possible with the tree-based
Bayesian network.

Let G be a graph with n nodes representing the random
candidate labels and edges representing the pairwise
dependency between the random variables. All of the label
pairs associated with nonzero correlation are thus connected.
The joint distribution of all labels may be written as a function
of all joint distributions associated with cliques in this graph
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Fig. 3. The Esaliency algorithm.

Fig. 2. Clustering analysis: Candidates from one image are more
clustered than candidates randomly chosen from various images.
Results on 156 images from the UWGT database. (a) MDL mixture of
Gaussians for sets of candidates from the same image. (b) MDL mixture
of Gaussians for sets of candidates randomly selected from different
images. From left to right: The histograms of the number of Gaussians
(k) that provide the lowest MDL, the histograms for the corresponding
log-likelihood, and the histogram for the corresponding MDL. The
analysis indicated that segments from the same image are clustered and
segments from different images are scattered in the feature space.
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(see, e.g., [20]). Deleting edges so that the resulting graph
becomes a tree leads to a simplified distribution that depends
only on second order statistics. To get the best approxima-
tion, the edges of G are weighted by the mutual information
between the corresponding nodes, and the maximum
weighted spanning tree of G is selected. The resulting tree
describes a distribution that is closest (by the Kullback-
Leibler divergence) to the original distribution (relative to all
approximations by trees) [14], [38].

Calculating the mutual information,

Iðli; ljÞ ¼
X
li¼0;1

X
lj¼0;1

pðli; ljÞ log
pðli; ljÞ
pðliÞpðljÞ

;

for each pair of candidates requires the probabilities of the
joint events. Recall that every label li is a binary r.v. with
expected value �i and variance �ið1� �iÞ. Then, a straight-
forward calculation, relying on (1), leads to the following
joint probabilities:

pðli ¼ 1; lp ¼ 1Þ ¼ �ðdijÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ið1� �iÞ�jð1� �jÞ

q
þ �i�j;

pðli ¼ 1; lj ¼ 0Þ ¼ pðli ¼ 1Þ � pðli ¼ 1; lj ¼ 1Þ
¼ �i � pðli ¼ 1; lj ¼ 1Þ;

pðli ¼ 0; lj ¼ 1Þ ¼ �j � pðli ¼ 1; lj ¼ 1Þ;
pðli ¼ 0; lj ¼ 0Þ ¼ 1� �i � �j þ pðli ¼ 1; lj ¼ 1Þ:

Given Iðli; ljÞ as the weights, the maximum weighted
spanning tree is found by the PRIM algorithm [40].
Choosing some node of this tree as a root r makes it a
directed tree (with no effect on the resulting distribution).
The directed tree is converted into a Bayesian network as
follows: For the root, pðlr ¼ 1Þ ¼ E½lr� ¼ �r. For each of the
other nodes in the tree, two conditional probabilities should
be set: pðli ¼ 1jlp ¼ 0Þ and pðli ¼ 1jlp ¼ 1Þ, where i is the
index of the node and p is the index of its parent:

pðli ¼ 1jlp ¼ 0Þ ¼ pðli ¼ 1; lp ¼ 0Þ
pðlp ¼ 0Þ ¼ pðli ¼ 1; lp ¼ 0Þ

1� �p
;

pðli ¼ 1jlp ¼ 1Þ ¼ pðli ¼ 1; lp ¼ 1Þ
pðlp ¼ 1Þ ¼ pðli ¼ 1; lp ¼ 1Þ

�p
:

Finally, given a vector of labels �l ¼ ðl1; . . . ; lnÞ, we may
calculate its probability by

pð�lÞ ¼ pðlrÞ
Y

i¼1;:::;n;i6¼r
p
�
lijlparðiÞ

�
; ð2Þ

where parðiÞ is the parent node of node i in the tree [38].
While the tree is indeed only an approximation of the

true distribution, we found that it works well for the
relatively clustered feature vectors in one image. In
particular, the joint assignments that are associated with
the “1” value assigned to the members of small tight
clusters are those with the highest probabilities.

3.2 Estimating Esaliency by Marginalization over
the Most Probable Scene Interpretations

We are interested in the most probable scene interpreta-
tions, as expressed by the most likely joint label vectors.
Estimating saliency only from the single most likely
assignment would lead to binary saliency, which is
probably not the best method for locating the targets

correctly. Therefore, we propose to marginalize over several
(N) most likely assignments, providing high saliency values
to members of small tight clusters.

With the tree-based graphical model, the N assignments

associated with the highest likelihood Lbest ¼ f�l1; �l2; . . . ; �lNg
are found using Nilsson’s algorithm [34]. This algorithm

uses exact inference to find the top N configurations and

their likelihoods by a sequence of maximum propagations.

For a general Bayesian network, this algorithm’s efficiency

depends on the number of cliques in the network, multiplied

by an exponent of the cliques’ size. However, for a tree-

based Bayesian network, the complexity is OðNn logðNnÞÞ
(where n is the number of nodes in the tree or, in our case,

the number of candidates).
Considering only the N most likely assignments as valid

interpretations, the distribution on the joint assignment

vectors is

p0ð�lÞ ¼ pð�lÞPN
j¼1 pð�ljÞ

: ð3Þ

The saliencies are then,

pT ðciÞ ¼
XN
j¼1

p0ð�ljÞ � lji : ð4Þ

We found that, for scenes containing 100-500 candidates,

finding the 100 first most probable assignments was

informative enough for directing attention to salient

locations.

3.3 Some Simple Variations on the Proposed
Saliency Mechanism

The proposed probabilistic model may be used to create

several simple variations on the basic attention algorithm

described above.

3.3.1 Global, Nonextended Saliency

One possible approach to saliency might be to look for global

exceptions, that is, a single candidate that is globally unique.

Note that, with this approach, we need to consider only

n different label vectors for which exactly one candidate is a

target (“1”) and the rest are nontargets (“0”). Thus, the

algorithm does not look for theN most likely hypotheses, but

simply evaluates the probability for the n one-target vectors

using the Bayesian network and (2). While this algorithm

seems reasonable, it turns out that it is not as good as the

Esaliency approach. (See Section 4.3 for experiments.)

3.3.2 Esaliency Using Learned Expected Value

A natural extension would be to use a nonfixed expected

value parameter �. We considered two versions. In the first

version,� is uniform but is set adaptively to a specific context.

In the second, � is space varying and is either estimated from

training data or is just set higher in the image center according

to some heuristic. See further details in Section 4.4. We found

that using the value of the uniform � learned from a training

set has almost no effect on the results, suggesting that the

Esaliency algorithm is not sensitive to the value of � as long

as it is small. The learned preference and the preference for
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the center, however, improve the algorithm’s performance
in many cases.

4 EXPERIMENTAL EVALUATION OF ESALIENCY

This section describes a comprehensive set of experiments
that illustrate the Esaliency algorithm and test it, quantita-
tively, on several data sets, and with respect to competing
algorithms and human attention. We first discuss some
implementation issues and illustrate the idea behind
Esaliency with a simple synthetic example. Then, we test
the algorithm on four image sets of natural outdoor scenes.
We compare Esaliency’s performance to that of the feature-
based approach described in [26] using the iLab implementa-
tion [1]. Some variations of the Esaliency algorithm are tested
as well. The computational savings from Esaliency in a
complex detection task (pedestrian detection) are estimated
in a separate experiment. Finally, we make a preliminary
attempt to relate the Esaliency algorithm’s fixation pattern to
that of the human visual attention mechanism.

4.1 Implementation

All of the experiments were carried out with the same
attention implementation and with the same default
parameters, unless otherwise stated. The candidates are
specified by a simple, fast, multiscale segmentation process
[10]. We used its openCV implementation. Segments with
bounding boxes whose widths and heights are between 2
and 20 percent of the image height are specified as
candidates. Better segmentation algorithms may reduce
search time, but could be computationally expensive.

Each candidate (segment) is characterized by a short
feature vector describing some simple properties: average
color (R, G, and B), dimensions of its bounding box, and its
area relative to the area of its bounding box. Every feature is
separately normalized to the ½0; 1� range, and the color
features are weighted by a factor of 10. This, of course,
makes them dominant. The distance dij between two
candidates was calculated as the weighted euclidean
distance between the feature vectors, normalized so that
the mean distance between pairs of feature vectors (from the
candidates of the processed image) is 0.5, and clipped to the
½0; 1� range. The correlations were calculated using these
distances and the � function described in Fig. 1b (with
D ¼ 0:3). The expected values �i were uniformly set to �i ¼
0:05 in all experiments, excluding those that specifically test
their influence (Section 4.4). N was set to 100 in all
experiments. In all of the experiments, we evaluate the
algorithm by considering the fixation path specified by the
descending Esaliency values.

With the current implementation, calculating Esaliency
for a 512� 384 image takes, on average, about 250 ms (on a
Pentium 4, with a 3 GHz processor and 1 GB memory). This
is fast enough for most complex applications and is now
being further improved. The application is available for
download at http://cis.cs.technion.ac.il/.

4.2 A Synthetic Illustration

The first example is nonrealistic and is brought here as an
illustration of the proposed attention algorithm. In this
example, we consider the Esaliency assigned to the objects

in an image containing 21 painted disks: 10 red, 5 blue,
3 green, 2 yellow, and 1 pink (Fig. 4a). The dependencies’
maximum spanning tree, which is built out of the
correlations, is shown in Fig. 4b. The Esaliency map and
the attention fixation path are shown in Figs. 4c and 4d. The
results are as expected—the item that appears once gets the
maximal saliency and is attended to first. The saliency is a
bit lower for the items that appear twice, followed by the
saliency of those repeated three times, and so on.

The red and the blue candidates appear several times
and thus are definitely nonexceptions. Yet, their higher
contrast with the white background makes them locally
more salient. Indeed, running iLab’s toolkit (with default
parameters), we see that the yellow and pink candidates are
not attended to early in the search; see Fig. 4e. In fact, due to
the local approach and the inhibition of return time
constants, the pink target, which is the only global
exception in the image, is never attended.

4.3 Testing Esaliency on Natural Scenes

The first set of natural scenes was selected from the UWGT
database [2]. This database includes many 512� 768 out-
door scene images, and an annotation file describing the
content of each. The 206 images containing objects such as
people, cars, houses, animals, bags, signs, and boats were
selected. Images containing only background items such as
sky, grass, trees, clouds, streets, and rocks were not used.
The attention experiments were carried out using 50 of
these images. (The other 156 images were used to validate

700 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 4, APRIL 2010

Fig. 4. Demonstrating the Esaliency algorithm on a synthetic image.
(a) The input image. (b) The dependencies’ spanning tree calculated by
the algorithm (each node is colored according to the corresponding
candidates). (c) The Esaliency map. (d) The first 20 fixations suggested
by Esaliency. (e) The first 20 fixations proposed by local saliency (iLab’s
toolkit).) This figure should be viewed in color.
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our basic observations in Section 2, and as a training set for
setting nonuniform expected values in Section 4.4).

Two subjects, unaware of the research goal, were asked “to
mark the interesting objects in each scene.” These markings
served as ground truth for the targets in this experiment. The
average number of marked objects (targets) in an image in the
test set was about 3.5. Some of the images (13) contained only
one target, while the others contained between 2 and
12 targets. Some of the multiple target images included
targets from the same category and some from different
categories; see the two leftmost columns in Fig. 5 for a sample
of the images and the corresponding marked targets.

We ran Esaliency with the default parameters. The
candidates (segments) were scanned in descending order of

saliency. Let m be the number of candidates scanned until
all targets are detected. A target was considered as detected
when an attended candidate segment intersected with the
corresponding marked region. Fig. 5c shows the scan path
associated with the first minðm; 20Þ-scanned candidates.

Some statistics of the search task results are summarized
in the left column of Table 1. Note that the search
mechanism is very efficient: Only a few candidates were
falsely visited on the way to detecting the true targets. With
our implementation, every image contained an average of
330 segments. This means that only a small fraction of the
image was scanned.

We then applied the local saliency model to the same
50 images using iLab’s toolkit (with its default parameters).
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Fig. 5. Esaliency versus iLab’s toolkit for images from the UWGT database. (a) The input images. (b) The objects marked as interesting by human

subjects. (c) The resulting fixation order of Esaliency marked on the segmented image, where candidates intersecting with marked targets are

marked in yellow. (d) iLab’s toolkit results. For both algorithms, the first 20 fixations (or a smaller number if all targets are detected earlier) are plotted.

Best viewed on a color computer screen.
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Some of the resulting scan paths are demonstrated in Fig. 5d.
Many targets are efficiently detected, but some problems are
apparent. In the third image, for example, the sky patches
between the trees are indeed locally salient and are selected,
by the local saliency process, long before the pedestrians. The
proposed algorithm, however, is able to take advantage of the
larger number of sky patches, reducing their Esaliency and
focusing attention on the pedestrians earlier.

We observed that about 30 percent of the targets were
not detected by the local saliency algorithm even after a
very large number of fixations. Therefore, comparing the
results by average detection attempts over all targets
(Table 1) was meaningless. We compared the algorithms
by plotting the number of fixations required for each target
to be found (Fig. 6). Note the advantage of the proposed

algorithm both in finding all the targets and in finding more
targets for the same number of fixations. It seems that some
of the misses of the local saliency algorithm are due to
worse priority specification (see Fig. 5), and others are due
to the inhibition-of-return mechanism and its noninforma-
tive time constant (that is inevitable in the biology-
motivated space-based design).

We also experimented with the global, nonextended
saliency algorithm (Section 3.3.1). The results are summar-
ized in Table 1 (right-hand column). Because of the strict
requirement for uniqueness, which is not consistent with
many images, the results are not as good as those of the
Esaliency algorithm. Although global saliency also yields
impressive results for many images, it fails when there are
a few salient regions with similar appearance (associated
with different targets or with the same target); see Fig. 7
for examples.
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TABLE 1
Results for Esaliency and Nonextended Global Saliency

(Section 3.3.1) on 50 Images from the UWGT Database [2]

Mean, standard deviations (std), and median are reported. There are
1-12 targets per image, with mean and std 3:5� 2:8.

Fig. 6. Comparing Esaliency and iLab on images from the UWGT
database: the target detection ratio as a function of the number of
fixations per target.

Fig. 7. Some additional examples for Esaliency compared with nonextended global saliency. (a) Input images. (b) The objects marked as interesting
by human subjects. (c) The fixation set by nonextended global saliency. (d) The fixation order specified by Esaliency. Candidates intersecting with
marked targets are marked in yellow, others in red. Best viewed on a color computer screen.
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The proposed Esaliency algorithm is not necessarily

better than local saliency for all tasks. We considered the

tasks reported in [25], where (variations of the) iLab

algorithm were tested in detecting red cans, traffic signs,

and emergency triangles. Table 2 compares the results for

the three tasks using the default-normalized iLab algorithm

and the proposed Esaliency algorithm. The images in the

red can and triangle data sets are 640� 480 pixels, while the

traffic sign images are 512� 384 pixels. As in [25], an image

fixation is considered successful if some part of the target

object is inside the circle centered at the chosen fixation

point (center of selected segment) with radius 80 for the two

first data sets and radius 64 for the third data set. (Note that,

in other experiments, an image fixation was considered

successful only if the selected segment intersected with a

marked target.)
The Esaliency algorithm performed somewhat better for

the emergency triangle task, and somewhat worse for the red

cans and traffic signs. Note that these objects are designed to

be locally salient, either for safety or for commercial reasons.

In the latter data set, Esaliency fails mostly on the roadside

light reflectors, which are discriminable by their dominant

oblique orientation. We found that the image fixations that

preceded fixation on the target light reflectors were always

on other interesting objects in the scene.

4.4 Esaliency on Natural Scenes with Nonfixed
Expected Value

We further tested how other preferences derived from
human behavior or soft learning affect Esaliency. First, we
tested whether setting the expected value parameter �
according to the context makes a difference. To specify �,
we used training sets of natural images and corresponding
(manually obtained) binary maps of target locations. � was
uniformly set as the average fraction of target pixels. The
� values were 0:024, 0:015, 0:013, and 0:037 for the UWGT
database, the red cans, the triangles, and the traffic signs,
respectively. See Table 3 (second column). Clearly, the
trained � has almost no effect for all four data sets,
suggesting that the Esaliency algorithm is not sensitive to
the value of � as long as it is small.

We then tested the effect of a nonuniform expected
value. Using the known eccentricity effect in human vision
[11], [60], we specified �i for the ith candidate by following
an exponentially decreasing function which is maximal in
the image center and is lower by a factor of e�1 in all
corners. This function was normalized so that its average
value is the default value � ¼ 0:05; see Fig. 8a. The prior �i
for the ith candidate is set to be the maximum value of the
map in it. The performance was improved for all data sets;
see Table 3, third column. We verified that the improve-
ment cannot be explained simply by ordering the candi-
dates according to the varying expected values; see the
rightmost column of Table 3.

We also experimented with space varying, context-
dependent expected values. A priority map was created
by averaging the binary maps of target locations, separately
for each training set, and then, smoothing them. See
Figs. 8b, 8c, 8d, and 8e. All the priority maps show a
preference for the center, reflecting the tendency of people
to center their photography objects. Here as well, �i is set to
the maximum value of the map inside the corresponding
candidate region. Note that, while the median number of
fixations never increases, their average number may be
higher in some cases; see Table 3, fourth column. This is
probably due to candidates being in atypical locations not
represented in the training set.
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TABLE 3
The Performance Associated with Several Versions of Esaliency, Described in Section 4.4, as Well as Some Reference Figures

(Two Bottom Rows)

The mean, standard deviations, and median number of false detections before the targets are detected are reported.

TABLE 2
Searching for Locally Salient Objects

(Red Can, Emergency Triangle, and Traffic Signs)

Comparing results of Esaliency and results reported in Itti et al. [25]. The
mean, standard deviations, and median number of false detections
before the targets are detected are reported. Some images from the
traffic sign database include more than one sign (while the other
databases always include one target per image).
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4.5 Using Esaliency to Accelerate Pedestrian
Detection

We next turned to test the Esaliency algorithm in the context
of pedestrian detection. We used the MIT StreetScenes
database [7] containing 3,547 images of urban scenes. The
locations of objects from nine categories—cars, pedestrians,
bicycles, buildings, trees, roads, sky, sidewalks, and
stores—are annotated in the images. We focused on the
task of detecting pedestrians. Esaliency (using default
parameters) was applied to all (852) images that contained
marked pedestrians. (The images were downsampled from
1;280� 960 to 640� 480). The mean number of false
fixations before locating the first pedestrian was 27. The
median was 12. The mean and the median numbers of false
fixations before all pedestrians were located were 41.55 and
21, respectively; see Fig. 9.

To estimate the computational savings, we considered a
simple model of the search process. Without attention, a
common detection mechanism (e.g., [55]) evaluates sub-
images. Suppose that the detection process starts from the
upper left corner of an h� w image, and scans the image in
raster scan with a 20� 30 window, jumping in steps of two
pixels. This is repeated for, say, six scales (to detect
pedestrians of different sizes), each time for an image
1.5 times smaller in both dimensions. The total number of
windows checked is T ¼

P5
i¼0
ðh=1:5i�30Þðw=1:5i�20Þ

4 . For
w� h ¼ 1;280� 960, T ¼ 5:1019�105. Consider an alterna-
tive scenario, where Esaliency sets the order of fixations. For
each fixation, we let the detection algorithm checks all the
windows that include the center fixation point in all six
scales. For k fixations, the number of checked windows is
T 0 ¼ k 20�30

4 � 6 ¼ 900k. Hence, T 0

T ¼ 0:0018k. That is, with
Esaliency, the median number of windows tested before all

pedestrians are detected is just T 0

T ¼ 0:0378, or less than
4 percent of the windows used in the sequential scan. (Note
that the estimate is conservative: We could reduce the
number of tested windows, for example, by taking only
those that contain all or most of the segment.)

Note that the results for the StreetScenes database are not
as good as those obtained for the images from the UWGT
database. One obvious reason is that, in the UWGT
database images, all “interesting objects” were marked
and considered to be targets. Here, only pedestrians are
considered targets, and other salient attention-attracting
objects, such as cars and signs, are considered to be
nontargets. Besides, most images in the UWGT database
are of natural scenes, and are less crowded with nontarget
salient objects. Actually, some of the pedestrians in the
StreetScenes images were not marked, and therefore,
although pedestrians are sometimes found earlier, this is
not counted as a success (see, e.g., last image in Fig. 9).

Nevertheless, as shown above, using Esaliency un-
doubtedly makes the detection more efficient. We empha-
size that the proposed bottom-up Esaliency algorithm does
not use any knowledge about the pedestrians. The results
could have been improved by adding such knowledge, by,
say, locating sidewalks or zebra crossings first, or by
optimizing the segmentation or the feature selection for the
pedestrian context.

4.6 Esaliency versus Human Eye Fixations

The main goal of this paper was to develop an efficient and
quantitatively reasoned attention process for computer
vision. Yet it is tempting to relate the sequence of fixations
associated with the proposed approach to that obtained by
the human visual attention mechanism. Moreover, the
similarity of the search pattern to that of the human search
pattern, usually regarded as the gold standard, supports the
proposed algorithm. We describe here a preliminary study
of this relation.

We follow the approach proposed in [35], which
evaluates an attention model by comparing the saliency
map proposed by that model to an empirical human saliency
map. The latter is constructed by recording human eye
fixations over an (limited time displayed) image, and
convolving each fixation point in the image with a
Gaussian. Averaging the human saliency maps obtained from
several (seven or more) subjects yields a mean human
saliency map for each image. The maps are intensity
normalized and downsampled (from 512� 384 to 32� 24)
so that they can be easily compared to the saliency maps of
the iLab algorithm [26], available in [1]. See Fig. 10. The
correlation coefficient between two saliency maps serves as
a quantitative scalar measure of similarity. See the upper
rows of Table 4 for the correlation between Itti’s model and
the empirical mean human saliency map, as reported in [35].

To evaluate Esaliency, we ran it on the same images and
created saliency maps in a similar way. Esaliency’s
“fixations” were specified as the centers of the attended
candidate regions. See Fig. 10. See also the correlation
coefficients between the resulting Esaliency maps and the
human saliency maps in Table 4.

All correlations between the mean human saliency maps
and those of the computational models are significant
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Fig. 8. Target location priority maps. The map (a) specifies a preference

for objects that are closer to the center. The other four maps are learned

from training sets associated with the four data sets described in

Section 4.4. (b) UWGT. (c) Red cans. (d) Triangle. (e) Traffic signs.
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(p-value� 0:05). The correlations between the mean human

maps and the Esaliency maps are higher than the correla-

tions with iLab saliency in five out of six images, implying a

somewhat better agreement.

5 DISCUSSION

In this paper, we proposed a new, region-based bottom-up

saliency measure. This measure is the (approximate)

probability of an image region to be salient, estimated from

preferences on the number of objects of interest in the scene,

and from validated stochastic modeling of the likely target

assignments. This quantitative approach differs from the

traditional feature-based (or space-based) methods. More-
over, the resulting Esaliency estimates are based on global
considerations, which are more justified.

We have validated our saliency measure using a variety
of image databases. Esaliency’s fixation path was validated
by comparing it to human fixation paths, by comparing it to
human selection of “interesting objects,” and for object
detection tasks. We compared Esaliency’s performance to
that of the dominant model in computerized visual
attention [26], and showed similar or better results. We
found that the proposed method is fast, reliable, and
performs better in complex, cluttered scenes.

We believe that the approach proposed here may serve as
a solid foundation for other search and detection tasks. Here,
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Fig. 9. Examples of Esaliency’s performance when locating pedestrians in the StreetScenes images. Best viewed on a color computer screen.
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we focused on a pure bottom-up approach. For specific
applications, top-down information is available and may be
integrated naturally in the framework described here. This
can be done by adapting the segmentation and the similarity
measures to the specific context, by setting the expected
�i values according to the candidate properties and the
context (see, e.g., [50]), or even by integrating a categorizing

mechanism into the search itself, making it more efficient by

changing the priorities dynamically (see [5]).
Finally, to the best of our knowledge, the mechanism

described here is the first quantitative and practical model for

object-based attention, i.e., an attention process that assigns

priorities to structural units that are the result of a perceptual
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TABLE 4
Correlation Coefficients between Human Saliency Maps [35] and Computational Model Saliency Maps

(a) Correlation coefficients between human saliency maps and iLab saliency maps. (b) Correlation coefficients between human saliency maps and
Esaliency’s saliency maps.

Fig. 10. Comparing computer saliency models and human saliency maps. (a) The input images. (b) The mean human saliency maps created from
recording human eye fixations [35]. (c) iLab [26] saliency maps. (d) Esaliency saliency maps.
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organization preprocessing stage. We intend to research

whether it may indeed explain some aspects of human

perception. The preliminary saliency comparisons described

in Section 4.6 are encouraging. Our mechanism’s correspon-

dence to eye fixations can be further improved by incorpor-

ating known properties of human visual search, such as

preference for the image center (Section 4.4), preference for

short interfixation distance (proximity) [28], and the inhibi-

tion of locations that are similar to already attended locations,

as suggested in [19] and as modeled, e.g., in [6].
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